红外探测器的原理和分类

不同种类的物体发射出的红外光波段是有其特定波段的,该波段的红外光处在可见光波段之外。因此人们可以利用这种特定波段的红外光来实现对物体目标的探测与跟踪。将不可见的红外辐射光探测出并将其转换为可测量的信号的技术就是红外探测技术。

    不同种类的物体发射出的红外光波段是有其特定波段的,该波段的红外光处在可见光波段之外。因此人们可以利用这种特定波段的红外光来实现对物体目标的探测与跟踪。将不可见的红外辐射光探测出并将其转换为可测量的信号的技术就是红外探测技术。

    从目前应用的情况来看,红外探测有如下几个优点:环境适应性优于可见光,尤其是在夜间和恶劣天候下的工作能力;隐蔽性好,一般都是被动接收目标的信号,比雷达和激光探测安全且保密性强,不易被干扰;由于是*目标和背景之间的温差和发射率差形成的红外辐射特性进行探测,因而识别伪装目标的能力优于可见光;与雷达系统相比,红外系统的体积小,重量轻,功耗低;探测器的光谱响应从短波扩展到长波;探测器从单元发展到多元、从多元发展到焦平面;发展了种类繁多的探测器和系统;从单波段探测向多波段探测发展;从制冷型探测器发展到室温探测器。由于红外探测技术有其独特的优点从而使其在军事国防和民用领域得到了广泛的研究和应用,尤其是在军事需求的牵引和相关技术发展的推动下,作为高新技术的红外探测技术在未来的应用将更加广泛,地位更加重要。红外探测器是将不可见的红外辐射能转变成其它易于测量的能量形式的能量转化器,作为红外整机系统的核心关键部件,红外探测器的研究始终是红外物理与技术发展的中心。自1800年Herschel发现太阳光谱中的红外线时所用的涂黑水银温度计为最早的红外探测器以来,随着红外实验和理论的发展,新器件不断涌现。红外探测器制备涉及物理、材料、化学、机械、微电子、计算机等多学科,是一门综合科学。

  热探测器热探测器吸收红外辐射后,温度升高,可以使探测材料产生温差电动势、电阻率变化,自发极化强度变化,或者气体体积与压强变化等,测量这些物理性能的变化就可以测定被吸收的红外辐射能量或功率。分别利用上述不同性能可制成多种热探测器:

  (1) 液态的水银温度计及气动的高莱池(Golay cell):利用了材料的热胀冷缩效应。
  (2) 热电偶和热电堆:利用了温度梯度可使不同材料间产生温差电动势的温差电效应。
  (3) 石英共振器非制冷红外成像列阵:利用共振频率对温度敏感的原理来实现红外探测。
  (4)测辐射热计:利用材料的电阻或介电常数的热敏效应―辐射引起温升改变材料电阻―用以探测热辐射。因半导体电阻有高的温度系数而应用最多,测温辐射热计常称“热敏电阻”。另外,由于高温超导材料出现,利用转变温度附近电阻陡变的超导探测器引起重视。如果室温超导成为现实,将是21世纪最引人注目的一类探测器;
  (5) 热释电探测器:有些晶体,如硫酸三甘酞、铌酸锶钡等,当受到红外辐射照射温度升高时,引起自发极化强度变化,结果在垂直于自发极化方向的晶体两个外表面之间产生微小电压,由此能测量红外辐射的功率。

  光子探测器光子探测器吸收光子后,本身发生电子状态的改变,从而引起内光电效应和外光电效应等光子效应,从光子效应的大小可以测定被吸收的光子数。

  (1)光电导探测器:又称光敏电阻。半导体吸收能量足够大的光子后,体内一些载流子从束缚态转变为自由态,从而使半导体电导率增大,这种现象称为光电导效应。利用光电导效应制成的光电导探测器分为多晶薄膜型和单晶型两种。
  (2)光伏探测器:主要利用p-n结的光生伏特效应。能量大于禁带宽度的红外光子在结区及其附近激发电子空穴对。存在的结电场使空穴进入p区,电子进入n区,两部分出现电位差,外电路就有电压或电流信号。与光电导探测器比较,光伏探测器背景限探测率大40%,不需要外加偏置电场和负载电阻,不消耗功率,有高的阻抗。
  (3)光发射-Schottky势垒探测器:金属和半导体接触,形成Schottky势垒,红外光

红外探测器的原理和分类

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐