深度学习:突破新兴技术的边界

从大数据到AI,几乎每个正在发展的技术分支都受益于深度学习的深刻价值。在以下各节中,我们将深入探讨这个人工智能机器学习分支如何地促进了新兴技术的发展。

  诸如大数据和人工智能之类的新兴技术正以惊人的速度发展,并且在深度学习方面取得了令人难以置信的进步,这在一定程度上使其成为可能。
  深度学习是更大范围的人工机器学习家族的一部分,旨在通过人造的人造神经网络模仿类人的学习和逻辑。深度学习的好处是它具有调查海量数据集并基于人类无法实现的海量数据集做出复杂决策的能力。
  深度学习模型学习复杂的概念,这些概念可以迭代地推动复杂的决策。这些系统将新数据与基准数据进行比较,从而使这些系统能够有效学习。为了提高这些系统的准确性,必须向它们提供更多数据,以建立更复杂的决策标准。

深度学习:突破新兴技术的边界
  可以理解,一旦这种技术在商业上可行,该技术就有可能破坏每个业务孤岛。到目前为止,根据Market Research Future(MRFR)的最新报告,到2023年,深度学习市场的价值将达到174亿美元。深度学习的应用与诸如机器学习、大数据和网络安全将重塑当今的现代商业环境。
  从大数据到AI,几乎每个正在发展的技术分支都受益于深度学习的深刻价值。在以下各节中,我们将深入探讨这个人工智能机器学习分支如何地促进了新兴技术的发展。
  大数据拓展深度学习的道路
  深度学习模型传统上依靠结构化和非结构化数据来建立决策流程。在语音识别和文本翻译中,与该技术配对的大数据使应用程序可以构建类似于人的特质的更复杂的语音识别和文本翻译应用。此外,计算机视觉应用程序也已经通过大数据和深度学习的配对而发展。在这里,计算机视觉应用可以做出更像人的决策,从而为从军事到医学的各种孤岛带来好处。
  最后,标签和图形处理的能力已经增强,可以处理大量数据,并在训练深度学习模型中发挥关键作用。这些发展趋势很可能会在航运、制药和其他依赖标签和图形设计的行业中提供价值。
  通过深度学习增强网络安全
  网络安全的主要发展之一是启用了深度学习的应用-Deep Instinct。Deep Instinct开发了一种移动和端点网络安全解决方案,用于利用深度学习并检测服务器、端点和移动电话之间的实时威胁。启用深度学习的这项技术可以通过深度学习算法防止攻击并预测未知攻击。它可以区分有害攻击和无害攻击,并可以立即将其保护扩展到整个网络。由于它具有跨教育、金融服务和医疗保健部门识别勒索软件的能力,因此可以见证较高的采用率。
  人工智能分析
  人工智能(AI)是人工机器学习的另一分支,是对设计模仿人类智能、理性和个性的自我意识技术系统的追求。人工智能已经从基本的聊天机器人演变为复杂的全职助手机器人。如今,最先进的AI系统凭借其标签可以快速翻译语言并识别网络图像。伴随着这一令人难以置信的发展,企业组织现在正在使用AI来解决一些最困难的挑战。
  深度学习可以被视为自主AI机器的学习组成部分。通过使AI系统具有深度学习的后端学习功能,研究人员希望开发先进的人工智能系统,以解决社会上一些最大的挑战,例如治愈癌症、开发安全的自动驾驶网络以及推进医学的各个方面。
  深度学习模型也可以在边缘计算中发挥作用。研究人员发现,这些系统可以帮助机器识别各种产品并刺激工业自动化。这些系统可以解决表面缺陷,通过其亮度和形状识别产品,并在没有人工干预的情况下在现场进行复杂的检查。通过这样做,深度学习支持的边缘计算可以有效地构建更具弹性的计算系统,同时最大程度地减少人为干预。
  计算和网络设备的使用已经转移了将数据分配和存储到边缘计算的负担。智能工厂的兴起,生物特征识别以及向云的转移为边缘计算中的深度学习模型创造了巨大的机会。边缘计算中的这些系统提供了一定程度的自动化,使这些具有IoT功能的设备如何通过各种模拟进行培训,并与人工智能协同工作以收集边缘智能。此过程需要对网络进行虚拟化,或者对虚拟机和容器的组合进行虚拟化,以最大程度地分配资源,并隔离服务以实现更快的计算。为了提高边缘计算的速度、需要解决隐私、风险控制和响应延迟的问题。
  未来发展
  这项引人入胜的技术发展缓慢,但随着技术的进步,它肯定会继续为新兴技术提供不可思议的价值。无论是AI、网络安全还是大数据,随着深度学习不断推动新兴技术的发展,我们一定会看到更加惊人的进步。(文/千家网)

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 人工智能进入“深度学习+”阶段

    我国的产业体系品类齐全、体量庞大,深度学习驱动的人工智能创新应用,有助于形成产业良性循环,促进底层技术突破,加快现代化产业体系升级。

    2024年2月24日
  • 深度学习为什么再一次的火遍安防圈?

    2016北京安博会近日落幕,连着四天白天晚上的加班已经让安防圈的各位媒体精疲力尽,虽然很累,但也收获巨大。要说什么技术在安博会上火了一把,我以为是深度学习。深度学习为什么再一次的火遍安防圈?

    2023年9月14日
  • 百度深度学习飞桨平台全新发布 加速AI规模化落地

    由百度打造的飞桨是国内首个自主研发、开源开放、功能丰富的产业级深度学习平台,经多轮升级和打磨之后,在深度学习框架的开发、训练、预测及部署等核心能力上均有着比肩甚至超越国外主流框架的表现。IDC报告显示,2021年飞桨位居中国深度学习平台市场综合份额第一。

    2024年2月8日
  • 人工智能技术现状剖析及发展趋势

    AI技术一直处于计算机技术的前沿,其研究的理论和发展在很大程度上将决定计算机技术的发展方向。目前很多AI的研究成果深刻地改变着人们的生活,将来,AI的发展将会更加快速,会给人们的生活工作和教育带来更大的影响。

    2024年4月5日
  • 人工智能快速发展 与智能技术革命长处之道在哪里

    无监督学习则通过训练程序,使机器能直接从已有数据中提取特征,对信息进行压缩,用于完成其他任务。如传统的主成分分析,可以将高维特征使用低维度向量近似。例如,我们可以使用主成分分析技术压缩图片,以达到节省储存空间的作用。因此,这类机器学习算法并不需要以往经验,也被称之为无监督学习。

    2024年11月27日
  • 夯实AI新型基础设施 加快科技自立自强步伐

    当前,我国正在建设科技强国的道路上大步迈进。习近平总书记在中共中央政治局第二次集体学习时强调,“要加快科技自立自强步伐,解决外国‘卡脖子’问题”。党的二十大报告明确指出,必须坚持科技是第一生产力、人才是第一资源、创新是第一动力,深入实施科教兴国、人才强国、创新驱动发展战略。

    2024年2月24日