拒绝人脸识别被黑产破解,一文看懂如何选取活体检测

2019年10月,杭州某小区一快递柜发生了一桩新闻。为提升用户体验,该快递柜上线了刷脸取件功能,没想到这项高科技却在小学生面前败下阵来:只需要在A4纸上打印一张父母的人脸照片,就可以顺利打开快递柜,代父母取走快递。

拒绝人脸识别被黑产破解,一文看懂如何选取活体检测
  2019年10月,杭州某小区一快递柜发生了一桩新闻。为提升用户体验,该快递柜上线了刷脸取件功能,没想到这项高科技却在小学生面前败下阵来:只需要在A4纸上打印一张父母的人脸照片,就可以顺利打开快递柜,代父母取走快递。
  事后,该快递柜迅速下线了这个还在测试的功能。探究”刷脸取件”失败的原因,主要是快递柜的人脸识别技术中,未加入防御照片、视频等伪造人脸攻击的活体检测技术。随着人脸识别的广泛应用大势所趋,技术安全性也愈发受到重视,尤其是无人值守的应用场景下,活体检测几乎是不可或缺的刚需功能。
  那么目前主流的活体检测算法有哪几种类型,各有什么特点,选择算法的关键指标又有哪些?《从零学习人脸识别》第四期(完整视频搜索”虹软人脸公开课”),会从算法原理、适用场景等角度进行系统梳理,并将介绍一款完全免费的活体检测算法。
  【活体检测的任务是什么?】
  什么是活体检测?
  简单来说,就是算法判断镜头捕捉到的人脸,究竟是真实人脸,还是伪造的人脸攻击。
  借助其他媒介呈现的人脸都可以定义为虚假的人脸,包括打印的纸质照片、电子产品的显示屏幕(照片&视频)、硅胶面具、立体3D人像等。
  活体检测技术能够抵御各种假脸的攻击,为人脸识别保驾护航。在人脸识别的完整链路中,通常需要先确认目标为真实人脸,之后才会进入识别环节。
  【主流检测方案及原理】
  目前主流的活体检测方案分为静默式和配合式两种。
  静默式活体检测无需用户进行额外动作,而是直接基于算法甄别纸张照片、屏幕成像、人脸面具等伪造人脸攻击。与配合式相比,静默式用户体验更好,速度更快,可在无感的情况下直接进行活体检测。
  配合式活体检测则需要用户根据提示做出相应的动作,通过眨眼、张嘴、摇头、点头等配合式组合动作,使用人脸关键点及人脸追踪技术,通过连续的图片,计算变化距离与不变距离的比值,进行上一帧图像与下一帧图像的对比,从而验证用户是否为真实活体本人操作。
  实际使用中,可根据具体场景选择方案。如闸机、门禁、验票等对检测速度要求更高的场景,一般推荐选用静默式活体。
  【常见技术路线】
  配合式活体检测技术出现较早,使用也较为普遍,但黑产从业者仍然处心积虑寻找攻破方式。
  去年8月发生了这样一则新闻:深圳龙岗警方发现有辖区居民的身份信息被人冒用,不法分子使用AI换脸技术,绕开多个社交服务平台或系统的人脸认证机制,为违法犯罪团伙提供虚假注册、刷脸支付等黑产服务。
  抓获嫌疑人后,警方发现嫌疑人主要是通过”人脸照片活化”软件,利用人脸关键点定位技术,在非法获取公民照片后生成眨眨眼、张张嘴、点点头等动态视频,以欺骗人脸核验的活体检测。并且还有卖家声称,这样的一套软件+教程,只需35元即可购得。
  黑产猖獗,这也对活体检测算法提出更高要求。无论是配合式还是静默式,都可以配合RGB单目活体、IR双目红外活体、3D Depth三种技术路线使用,从而进一步提升防范能力。
  目前国内已有算法平台开放了相关技术。譬如虹软视觉开放平台免费开放的ArcFace人脸识别SDK,同时支持RGB和IR红外活体检测。该算法不仅能实现高鲁棒性的判断,可供开发者满足各类场景需求,而且还支持完全免费、离线使用。
  谈到RGB单目活体、IR双目红外活体、3D Depth这三种技术路线,在防范能力和使用成本上又各有差异。
  一、RGB单目活体
  虹软视觉开放平台RGB单目活体检测技术,采用普通RGB摄像头即可,通过分析采集摩尔纹、成像畸形、反射率等人像破绽,从而获得活体检测所需要的识别信息,通过多维度的识别依据保证了识别的准确性。
  特点:采用普通单目摄像头,所以成本较低,对屏幕成像和纸张照片类攻击有着良好防御性。
  二、IR双目红外活体
  虹软视觉开放平台IR双目红外活体,在RGB单目活体的算法能力基础上,加入了红外摄像头。
  由于红外图像滤除了特定波段的光线,天生抵御基于屏幕成像的假脸攻击。事实上,不管是可见光还是红外光,本质都是电磁波。物体成像与其表面材质的反射特性有关。真实人脸和纸片、屏幕、立体面具等攻击媒介的反射特性都是不同的,所以成像效果也不同。
  而这种表面材质差异在红外波反射方面会更加明显,当屏幕上的人脸出现在红外摄像头前,红外成像的画面里只有白花花一片,连人脸都无法显示,攻击也就无法得逞。
  特点:由于硬件的差异,红外活体相对RGB活体成本有所提高。但同时,对于屏幕成像和纸张照片类的防御力也更加优秀。
  三、3D Depth活体
  3D Depth活体检测采用结构光/TOF等深度摄像头,引入了”深度信息”概念,可以得到人脸区域的3D数据,并基于这些数据做进一步分析,能够很容易地辨别纸质照片、屏幕等2D媒介的假脸攻击。
  特点:3D Depth活体检测对屏幕、纸张和面具类攻击的防御能力最好,但是同时硬件成本也是最高的。
  【活体检测算法关键指标有哪些?】
  在具体应用场景中,一款活体检测算法是否适用,可以采用”活体检测算法关键指标”进行判断。对此,在虹软视觉开放平台的”开发者技术支持体系”中也进行了详细介绍。
  目前业内主要将活体检测能力分为基础级和增强级两档,基础级可防范二维静态纸质图像攻击和二维静态电子图像攻击,增强级可防范二维动态图像攻击、三维面具攻击和三维头模攻击。
  在衡量活体检测算法的时,我们通常会引入LDAFAR、LDANRR、LPFRR和LPNRR四个值作为衡量标准,它们的计算方式如下:
  LDAFAR=(1- 成功标记为活体检测攻击的次数/活体检测攻击总次数)×100%
  LDANRR=(引起活体检测系统无响应的活体检测攻击次数/活体检测攻击总次数)×100%
  LPFRR= (错误标记为活体检测攻击的次数/ 活体呈现总次数)×100%
  LPNRR=(引起活体检测系统无响应的活体呈现次数/活体呈现总次数)×100%
  基础级算法的性能指标要求:当LDAFAR为1%时,LPFRR<1%。
  增强级算法的性能指标要求:当LDAFAR为0.1%时,LPFRR<1%。
  尽管活体检测正成为人脸识别应用场景下的标配,但在具体使用中,仍需要具体考量成本与需求的平衡,选择适合的活体检测算法,不能一概而论。

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 公安图侦手段分析及应用

    视频建设的不断建设和投入使用,视频图像的分辨率也随之大大提高,有利于扩展更多的监控分析功能。通过引进先进的视频技术,改变传统视频监控的被动性和人为性,减少各类因素造成的监控问题,增强治安监控系统的智能性、可用性,降低监控员的工作强度,提高工作效率。

    2024年4月4日
  • 基于云计算的视频实战应用平台的建设方案和应用

    常州市平安城市视频监控技术已经从联网整合阶段。发展到视频实战深度应用阶段。常州市公安局根据本地的视频实战应用需求,建设了基于云计算的视频实战应用平台。

    2024年1月15日
  • 浅谈视频监控中的智能分析技术

    在智能交通中,通过智能视频分析技术,可以从视频中分理出一些值得关注的关键信息,并通过实时分析加工,获取交通状况信息,同时对实施现场路况作出即时反应。

    2023年9月16日
  • 行为类智能分析最具价值 PTZ自动跟踪

    在目前的智能视频分析中,大致被分为三类,以故障维护为目的的诊断类智能分析;以视频信息核对为目的的识别类智能分析;以自动分析与跟踪为主的行为类智能分析。

    2024年4月10日
  • 以智能分析技术评估监控产品的智能化(一)

    安防行业的评估工作起步较晚,目前该领域的评估主要是借鉴安全生产领域的评价方法来进行评估。如专家打分法、加权平均法、层次分析法、灰色系统法,或有的借鉴国外的效能评估的方法来对安全防范系统进行评估等等。但视频监控系统的智能化评估,对于该系统智能视频分析与识别技术能否起作用,能否真正发挥安全效益又至关重要。本文将主要介绍在安防行业智能视频监控评估的一些问题和国外相关方面的知识。

    2024年4月14日
  • 实现监控数据价值 智能分析让它活起来

    视频监控数据数据的重要性越来越突出,视频智能分析技术的出现将海量视频数据进行分析处理,将有效信息删选出来,为存储减轻了压力。

    2024年4月10日