聚焦大数据平台建设 部署条件分为哪几步?

如何快速扩展已有大数据平台,在其基础上扩充新的机器是云计算等领域应用的关键问题。在实际2B的应用中,有时需要增减机器来满足新的需求。如何在保留原有功能的情况下,快速扩充平台是实际应用中的常见问题。

【安防在线 www.anfang.cn】

什么是大数据平台?

IBM提出的“大数据平台”架构具备四大核心能力:包括Hadoop系统、流计算(Stream Computing)、数据仓库(Data Warehouse)和信息整合与治理(Information Integration and Governance)。其中的代表产品有IBM InfoSphere BigInsights、IBM InfoSphere Streams、InfoSphere Warehouse、IBM PureData系统等。

那么,大数据平台从平台部署和数据分析过程可分为如下几步:

1、linux系统安装

一般使用开源版的Redhat系统–CentOS作为底层平台。为了提供稳定的硬件基础,在给硬盘做RAID和挂载数据存储节点的时,需要按情况配置。例如,可以选择给HDFS的namenode做RAID2以提高其稳定性,将数据存储与操作系统分别放置在不同硬盘上,以确保操作系统的正常运行。

2、分布式计算平台/组件安装

目前国内外的分布式系统的大多使用的是Hadoop系列开源系统。Hadoop的核心是HDFS,一个分布式的文件系统。在其基础上常用的组件有Yarn、Zookeeper、Hive、Hbase、Sqoop、Impala、ElasticSearch、Spark等。

先说下使用开源组件的优点:1)使用者众多,很多bug可以在网上找的答案(这往往是开发中最耗时的地方)。2)开源组件一般免费,学习和维护相对方便。3)开源组件一般会持续更新,提供必要的更新服务『当然还需要手动做更新操作』。4)因为代码开源,若出bug可自由对源码作修改维护。

再简略讲讲各组件的功能。分布式集群的资源管理器一般用Yarn,『全名是Yet Another Resource Negotiator』。常用的分布式数据数据『仓』库有Hive、Hbase。Hive可以用SQL查询『但效率略低』,Hbase可以快速『近实时』读取行。外部数据库导入导出需要用到Sqoop。Sqoop将数据从Oracle、MySQL等传统数据库导入Hive或Hbase。Zookeeper是提供数据同步服务,Yarn和Hbase需要它的支持。Impala是对hive的一个补充,可以实现高效的SQL查询。ElasticSearch是一个分布式的搜索引擎。针对分析,目前最火的是Spark『此处忽略其他,如基础的MapReduce 和 Flink』。Spark在core上面有ML lib,Spark Streaming、Spark QL和GraphX等库,可以满足几乎所有常见数据分析需求。

值得一提的是,上面提到的组件,如何将其有机结合起来,完成某个任务,不是一个简单的工作,可能会非常耗时。

3、数据导入

前面提到,数据导入的工具是Sqoop。用它可以将数据从文件或者传统数据库导入到分布式平台『一般主要导入到Hive,也可将数据导入到Hbase』。

4、数据分析

数据分析一般包括两个阶段:数据预处理和数据建模分析。

数据预处理是为后面的建模分析做准备,主要工作时从海量数据中提取可用特征,建立大宽表。这个过程可能会用到Hive SQL,Spark QL和Impala。

数据建模分析是针对预处理提取的特征/数据建模,得到想要的结果。如前面所提到的,这一块最好用的是Spark。常用的机器学习算法,如朴素贝叶斯、逻辑回归、决策树、神经网络、TFIDF、协同过滤等,都已经在ML lib里面,调用比较方便。

5、结果可视化及输出API

可视化一般式对结果或部分原始数据做展示。一般有两种情况,行数据展示,和列查找展示。在这里,要基于大数据平台做展示,会需要用到ElasticSearch和Hbase。Hbase提供快速『ms级别』的行查找。 ElasticSearch可以实现列索引,提供快速列查找。

聚焦大数据平台建设 部署条件分为哪几步?

平台搭建主要问题:

1、稳定性 Stability

理论上来说,稳定性是分布式系统最大的优势,因为它可以通过多台机器做数据及程序运行备份以确保系统稳定。但也由于大数据平台部署于多台机器上,配置不合适,也可能成为最大的问题。 曾经遇到的一个问题是Hbase经常挂掉,主要原因是采购的硬盘质量较差。硬盘损坏有时会到导致Hbase同步出现问题,因而导致Hbase服务停止。由于硬盘质量较差,隔三差五会出现服务停止现象,耗费大量时间。结论:大数据平台相对于超算确实廉价,但是配置还是必须高于家用电脑的。

2、可扩展性 Scalability

如何快速扩展已有大数据平台,在其基础上扩充新的机器是云计算等领域应用的关键问题。在实际2B的应用中,有时需要增减机器来满足新的需求。如何在保留原有功能的情况下,快速扩充平台是实际应用中的常见问题。

上述是自己项目实践的总结。整个平台搭建过程耗时耗力,非一两个人可以完成。一个小团队要真正做到这些也需要耗费很长时间。

目前国内和国际上已有多家公司提供大数据平台搭建服务,国外有名的公司有Cloudera,Hortonworks,MapR等,国内也有华为、明略数据、星环等。另外有些公司如明略数据等还提供一体化的解决方案,寻求这些公司合作对 于入门级的大数据企业或没有大数据分析能力的企业来说是最好的解决途径。

对于一些本身体量较小或者目前数据量积累较少的公司,个人认为没有必要搭建这一套系统,暂时先租用AWS和阿里云就够了。对于数据量大,但数据分析需求较简单的公司,可以直接买Tableau,Splunk,HP Vertica,或者IBM DB2等软件或服务即可。

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 战略专家看CIO如何“规避”云存储的缺陷

    云存储技术在某些应用案例中提供了一些明显的好处。但是,人们需要避免云存储的什么缺陷呢?美国俄亥俄州哥伦布的Veeam软件公司的软件战略专家Rick Vanover对于这个问题分享了他的见解。

    2023年8月20日
  • 大数据时代来临 存储技术趋势预测与分析

    存储虚拟化是目前以及未来的存储技术热点,它其实并不算是什么全新的概念,RAID、LVM、SWAP、VM、文件系统等这些都归属于其范畴。存储的虚拟化技术有很多优点,比如提高存储利用效率和性能,简化存储管理复杂性,绿色节省,降低运营成本等。

    2024年4月4日
  • 浅谈监控储存如何关联数据实现智能化

    随着监控系统迈向高清时代的步伐在加快,存储作为系统应用的重要部分,势必会有更多的发展和变化。未来的监控存储,会跟现在通用的数据存储一样,朝着共同观察、响应节能、低功耗的趋势发展,除了设备本身的节能设计外,还有更多存储过程、系统配置方面的优化可做。

    2023年9月14日
  • 从某银行案例看海康威视金融视频云存储方案设计

    坊间早有传闻,云有幻化,不拘大小,深耕安防。海康威视通过自己的技术挖掘及理解,结合金融行业特殊需求,更是提出了“微视云”一说,究竟怎么回事?请随本刊走进海康威视的金融视频云存储方案评估现场。

    2024年1月30日 资讯
  • 全面了解关于高效存储的五种不同解读

    随着信息化进程的不断发展,数据已经取代计算成为了信息计算的中心。高效存储旨在缓解存储系统的空间增长问题,缩减数据占用空间,简化存储管理,最大程度地利用已有资源,降低成本。对这些用户来说,存储利用率直接关系到存储投资回报的多少,这显然是高效存储要解决的一个重要问题。

    2023年9月14日
  • 网络视频存储方案

    导读:目前视频监控存储的模式主要分为:本地存储模式和网络视频集中存储模式(NAS存储、IPSAN存储)两大类。本地存储模式是将编码器和本地磁盘存储进行直接连结的存储模式。网络视频集中存储模式一般是指基于互联网和基于IPSAN或NAS协议的音视频数据流存储模式。

    2024年1月19日