各类算力芯片,如何繁荣生长?

图片

?随着ChatGPT的出圈,大家可以明显感受到全社会对于生成式人工智能技术的广泛关注,随着大模型的数量和模型参数量不断激增,对算力的需求也越来越高。

根据《中国算力发展指数白皮书》中的定义,算力是设备通过处理数据,实现特定结果输出的计算能力。

算力实现的核心是CPUGPU等各类计算芯片,并由计算机、服务器和各类智能终端等承载,海量数据处理和各种数字化应用都离不开算力的加工和计算。

那么,不同的算力芯片分别适用于何种应用场景,不同的算力芯片又有哪些区别?

01

不同场景需要何种算力芯片

小至耳机、手机、PC,大到汽车、互联网、人工智能、数据中心、超级计算机、航天火箭等,“算力”都在其中发挥着核心作用,而不同的算力场景,对芯片的要求也各不同。

图片

数据中心作为数字时代的核心基础设施,承载着大量的数据处理、存储和传输任务。因此,它们需要强大的算力来应对各种复杂的计算需求。数据中心和超算需要高于1000TOPS的高算力芯片。当前,超算中心算力已经进入E级算力(百亿亿次运算每秒)时代,并正在向Z(千E)级算力发展。数据中心对于芯片的低功耗、低成本、可靠性以及通用性的要求都极高。

智能自动驾驶涉及人机交互、视觉处理、智能决策等众多方面,车载传感器(激光雷达、摄像头、毫米波雷达等)的不断增加,数据处理的实时性、复杂性和准确性要求不断提高,都对车载算力提出了更高的要求。通常,业内认为实现L2级自动辅助驾驶需要的算力在10TOPS以下,L3级需要30~60TOPS,L4级需要超过300TOPS,L5级需要超过1000TOPS,甚至4000+TOPS。所以自动驾驶领域的车载算力是远远大于生活中常见的手机、电脑的计算能力。比如蔚来ET5的处理器算力达1016TOPS、小鹏P7的处理器算力达508TOPS。在智能驾驶中,安全至关重要,因此该场景对算力芯片的可靠性有着极高的要求,对于芯片通用性的要求也较高,对于功耗和成本的要求就相对没有那么苛刻。

为了应对当前视频处理、人脸识别以及异常检测等复杂任务的挑战,同时确保系统在未来技术升级和拓展时拥有充足的计算资源。智能安防系统需要大约4-20TOPS的算力,这一数值虽然相较数据中心要小得多,但是也足以保障智能安防系统的高效稳定运作。随着AI安防进入下半场,算力的重要性愈发凸显,这一数值也在不断上涨。智能安防对低成本和可靠性的需求比较高,功耗和通用性的要求则相对中等。

在智能移动终端中,可穿戴设备等小型产品对算力的需求相对不高,但智能手机、笔记本电脑等产品对算力的需求正在大幅提升。比如,前几年的iPhone12搭载的A14芯片算力约为11TOPS,小米10手机所配备的骁龙865芯片算力则为15TOPS。然而,随着AI技术在智能手机中的日益集成和普及,骁龙888的算力已达到26TOPS,之后的8Gen1、8Gen2等芯片更是算力更是做了显著提升。智能移动终端也是一个对低功耗和低成本有着高要求的应用场景,对可靠性的要求相对较高,对通用性则没有太多的限制。

02

主流的算力芯片及其特征

当下的基础算力主要由基于CPU芯片的服务器提供,面向基础通用计算。智能算力主要基于GPU、FPGA、ASIC等芯片的加速计算平台提供,面向人工智能计算。高性能计算算力主要基于融合CPU芯片和GPU芯片打造的计算集群提供,主要面向科学工程计算等应用场景。

图片

CPU是传统通用计算之王,包含运算器、控制器、存储器等主要部分。数据在存储器中存储,控制器从存储器中获取数据并交给运算器进行运算,运算完成后再将结果返回存储器。CPU的特点是通用性强,可处理各种类型的计算任务,但其计算效率不及专门针对特定任务设计的芯片。

GPU最初用于加速图形渲染,也被称为图形处理的利器。近年来,GPU在深度学习等领域表现出色,被广泛应用于人工智能计算。GPU的特点是具有大量并行计算单元,可同时处理大量数据,使其在并行计算任务中具有很高的效率。但GPU的通用性不及CPU,仅适用于特定类型计算任务。

ASIC是一种专为特定任务而设计的芯片。它通过硬件实现算法,可在特定任务中实现极高的计算效率和能效。ASIC的特点是针对性强,仅适用于特定任务,但其计算效率和能效远超CPU和GPU,适用于规模大或成熟度高的产品。

FPGA利用门电路直接运算、速度较快。相比于GPU,FPGA具有更高的处理速度和更低的能耗,但相比相同工艺条件下的ASIC,FPGA仍有不及,不过FPGA可以进行编程,相比ASIC也更加灵活。FPGA适用于快速迭代或小批量产品,在AI领域,FPGA芯片可作为加速卡加速AI算法的运算速度。

GPGPU即通用图形处理器,其中第一个“GP”通用目的,而第二个“GP”则表示图形处理,主要目标是利用GPU的并行计算能力来加速通用计算任务。可以通俗的将GPGPU理解为一个辅助CPU进行非图形相关程序的运算的工具。适用于大规模并行计算场景,比如科学计算、数据分析、机器学习等场景。

03

GPU是AI的最优解,但未必是唯一解

在ChatGPT引发的人工智能热潮下,最受欢迎的莫过于GPU,为了发展AI,全球领先的科技巨头都在争相囤积英伟达的GPU。GPU因何受到AI时代诸多厂商的青睐?

原因很简单,因为AI计算和图形计算类似,包含大量的高强度并行计算任务。

具体解释为,训练和推理是AI大模型的基石。 在训练环节,通过输入大量的数据,训练出一个复杂的神经网络模型。在推理环节,利用训练好的模型,使用大量数据推理出各种结论。

而神经网络的训练和推理过程涉及一系列具体的算法,如矩阵相乘、卷积、循环层处理以及梯度运算等。这些算法通常可以高度并行化,也就是说,它们可以被分解为大量可以同时执行的小任务。

而GPU拥有大量的并行处理单元,可以快速地执行深度学习中需要的矩阵运算,从而加速模型的训练和推理。

目前,大部分企业的AI训练,采用的都是英伟达的GPU集群。如果进行合理优化,一块GPU卡,可以提供相当于数十台甚至上百台CPU服务器的算力。AMD英特尔等企业也正在积极提升其技术实力,争取市场份额。中国头部厂商包括景嘉微、龙芯中科、海光信息、寒武纪、芯原股份等。

可以看到,在AI领域,GPU一骑绝尘,正如英伟达将自身定义为人工智能领导者一样,可以看到业内目前几乎所有关于人工智能的应用背后都离不开GPU的身影。

这时候可能会有人发问,在AI盛行的当下,单凭GPU就足够了吗?GPU是否会独占未来AI市场的鳌头,成为无可争议的宠儿?

笔者认为,非也。GPU固然是当下的最优解,但未必是唯一解。

CPU可以发挥更多的作用

GPU虽然目前在AI领域占据了主导地位,但是它也面临着一些挑战和局限。比如说,GPU的供应链问题导致了价格上涨和供应不足,这对于AI开发者和用户来说都是一个负担。而CPU则有着更多的竞争者和合作伙伴,可以促进技术的进步和降低成本。而且,CPU也有着更多的优化技术和创新方向,可以让CPU在AI领域发挥出更大的作用。

一些更为精简或小巧的模型,在传统CPU上同样能够展现出卓越的运行效率,而且往往更加经济实惠、节能环保。这证明了在选择硬件时,需根据具体应用场景和模型复杂度来权衡不同处理器的优势。比如HuggingFace公司的首席AI布道者JulienSimon演示的一个基于IntelXeon处理器的语言模型Q8-Chat。这个模型有70亿个参数,可以在一个32核心的CPU上运行,并提供一个类似于OpenAIChatGPT的聊天界面,可以快速地回答用户的问题,并且速度比ChatGPT快得多。

除了运行超大规模的语言模型,CPU还可以运行更小更高效的语言模型。这些语言模型通过一些创新的技术,可以大幅减少计算量和内存占用,从而适应CPU的特点。这也意味着CPU在AI领域并没有被完全边缘化,而是有着不容忽视的优势和潜力。

全球CPU市场由英特尔、AMD双寡头垄断,合计市场份额超过95%。目前,龙芯、申威、海光、兆芯、鲲鹏、飞腾六大国产CPU厂商快速崛起,加速推动了国产CPU的发展进程。

CPU+FPGA、CPU+ASIC也富有潜力

不仅如此,由于AI加速服务器异构的特点,市场上除了CPU+GPU的组合方式之外,还有其它多种多样的架构,例如:CPU+FPGA、CPU+ASIC、CPU+多种加速卡。

技术的变革是迅速的,未来确有可能出现更加高效、更加适合AI计算的新技术。CPU+FPGA、CPU+ASIC便是未来的可能之一。

CPU擅长逻辑控制和串行处理,而FPGA则具有并行处理能力和硬件加速特性。通过结合两者,可以显著提升系统的整体性能,特别是在处理复杂任务和大规模数据时。FPGA的可编程性使得其可以根据具体应用场景进行灵活配置和定制。这意味着CPU+FPGA架构可以适应各种不同的需求,从通用计算到特定应用的加速,都可以通过调整FPGA的配置来实现。

而ASIC是专门为特定应用设计的集成电路,因此它在性能和功耗上通常都经过了高度优化。与CPU结合使用时,可以确保系统在处理特定任务时具有出色的性能和效率。此外,ASIC的设计是固定的,一旦制造完成,其功能就不会改变。这使得ASIC在需要长时间稳定运行和高可靠性的场景中表现出色。

全球FPGA芯片市场主要由赛灵思、英特尔双寡头垄断,合计占有率高达87%。国内主要厂商包括复旦微电、紫光国微和安路科技。国外谷歌、英特尔、英伟达等巨头相继发布了ASIC芯片。国内寒武纪、华为海思、地平线等厂商也都推出了深度神经网络加速的ASIC芯片。

GPGPU能使用更高级别的编程语言,在性能和通用性上更加强大,也是目前AI加速服务器的主流选择之一。GPGPUDE核心厂商主要包括NVIDIA、AMD、壁仞科技、沐曦和天数智芯等。

04

中国算力,规模如何?

根据IDC的预测,未来3年全球新增的数据量将超过过去30年的总和,到2024年,全球数据总量将以26%的年均复合增长率增长到142.6ZB。这些将使得数据存储、数据传输、数据处理的需求呈现指数级增长,不断提升对算力资源的需求。另外,面向人工智能等场景,大规模的模型训练和推理也需要强大的高性能算力供应。

近年来,中国算力基础设施建设取得显著成效。

到2023年底,全国在用数据中心机架总规模超过810万标准机架,算力总规模达到230百亿亿次/秒(EFLOPS),算力正加速向政务、工业、交通、医疗等各行业各领域渗透。同时,在“东数西算”工程与全国一体化算力网的布局下,中国算力网——智算网络一期已经上线,全国算力“一张网”已具雏形。

政策面,中国陆续出台《全国一体化大数据中心协同创新体系算力枢纽实施方案》、《算力基础设施高质量发展行动计划》、《“十四五”数字经济发展规划》等一系列文件推动算力基础设施建设。此外,国家推动多地智算中心建设,由东向西逐步扩展。当前中国超过30个城市正在建设或提出建设智算中心,据科技部出台政策要求,“混合部署的公共算力平台中,自主研发芯片所提供的算力标称值占比不低于60%,并优先使用国产开发框架,使用率不低于60%”,国产AI芯片渗透率有望快速提升。据IDC数据,中国智能算力未来将快速增长,2021年到2026年期间中国智能算力规模年复合增长率达52.3%。

       原文标题 : 各类算力芯片,如何繁荣生长?

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 分布式数据中心或是未来数据中心发展方向

    随着业务的发展与数据量的增长,在存储、计算、安全等方面占据优势的分布式架构数据中心或将成为数据中心未来发展的趋势。与此同时,分布式数据中心带来的建设挑战也为数据中心可持续发展指明方向。未来的数据中心架构发展必将精彩纷呈。

    2024年4月7日
  • 视频监控:2013年宽动态应用前景广阔

    我们知道,摄像机的核心是CCD,目前国内没有CCD的生产能力,主要集中在日本和韩国。由于CCD在生产过程中分不同等级以及生产商获得的途径不同,造成CCD的采集效果也不同。一个简单的检测方法,就是将摄像机通电,不接镜头,用手遮住镜头接口,看图像有没有亮点,雪花大不大,然后接上镜头,将摄像机对准一个色彩鲜明的物体,查看监视器的颜色是否有偏色,图像有无扭曲现象,色彩和灰度是否平滑。

    2024年4月16日
  • 资深项目工程师谈红外半球运维注意事项

    使用黑白摄像机、特殊彩色摄像机或者经过改造的普通彩色摄像机CCD图象传感器具有很宽的感光光谱范围,其感光光谱不但包括可见光区域,还延长到红外区域,利用此特性,可以在夜间无可见光照明的情况下,用辅助红外光源照明也可使CCD图象传感器清晰的成像。

    2024年4月12日
  • 银行安防系统设计方案(全方位银行安防系统创新设计方案)

      银行安防系统设计方案:构建安全金融堡垒   在金融行业高速发展的今天,银行作为资金流动的核心枢纽,其安全防范工作的重要性不言而喻。银行安防系统设计方案不仅是保障银行资产和客户安…

    2024年11月19日
  • 监控连交换机有多少类型

    监控连交换机有多少类型 什么是监控连交换机 监控连交换机是一种用于监控和管理网络设备的工具。它可以提供实时的网络流量数据、设备状态和性能指标等信息,帮助管理员更好地了解和管理网络。…

    2023年9月18日
  • 工信部推动集成电路核心技术突破 大基金二期募资已启动

    集成电路产业是一个技术密集型、人才密集型和资金密集型产业,当前国家集成电路产业基金正在进行第二期募集资金,欢迎各方企业参与基金的募集。

    2024年4月16日