大数据主要分析模式和分析技术

随着技术的不断发展,个性化推荐引擎以及大数据分析引擎的问世能够更加高效的在海量数据中分析得出更有价值的信息;对于日志数据,可对用户点击浏览的行为日志和系统运行行为日志进行分析。使得系统能够根据实际情况产生出更加智能的结果。

大数据时代所分析的数据的主要特征是“多源异构”,其分析过程是逐层抽象、降维、概括和解读的过程。从数据采集的源头进行划分,可将大数据时代分析处理的数据对象划分为以下几个类别:


(1)各网页中用户的浏览次数、点击率,各种社交网站、动态网站网页内容信息的变化,搜索引擎中关键词的搜索量、网络实时监控数据等互联网数据。


(2)可以用于分析用户行为、对系统的操作、以及系统运行状态的日志数据。


(3)在通信领域中的各种信号、信令数据,用户的个人信息以及通话位置、时长等数据。


(4)国民经济中各领域、各行业的统计分析数据。


对于这些数量庞大的,来自不同源头的非结构化数据。其分析模式的特点如下:对于互联网产生的数据,其主要的应用是建立搜索引擎,通过搜索引擎进行数据检索、处理。


随着技术的不断发展,个性化推荐引擎以及大数据分析引擎的问世能够更加高效的在海量数据中分析得出更有价值的信息;对于日志数据,可对用户点击浏览的行为日志和系统运行行为日志进行分析。使得系统能够根据实际情况产生出更加智能的结果。日志数据与网页数据的分析处理模式较为类似,都是通过细致分析从而探寻出数据中蕴藏的价值。


这种数据分析处理模式称为“离线批处理模式”。对于通信领域的数据分析,分析决策人员会对经过细致分析的数据进行统计归纳和查询,并且在短时间内获得有价值的信息。


以此来确保系统的交互性并提升用户体验。这种数据分析处理模式称为“查询式分析”模式;对于互联网以及国民经济中重要行业的数据进行实时监控,这种模式称为“实时数据分析处理“模式。


以上为依据时间特征划分的数据分析模式。而实现这些分析模式的主要方法有:分类、回归分析、聚类、关联规则、神经网络、WEB数据挖掘等。


要想从急剧增长的数据资源中挖掘分析出有价值的信息,需要先进的分析技术作支撑。从宏观上看,大数据分析技术发展所面临的问题均包含三个主要特征:


(1)数据量庞大并以惊人的速度增长;


(2)数据种类与结构多样化,并以半结构化和非结构化的数据为主;


(3)需要具备及时快速的分析速度,即实时分析。这些特征使得传统的数据分析技术无法满足要求,更加先进的数据分析平台才是大数据时代更好的选择。


为了有效应对大数据时代数据分析问题的三个主要特征以及满足大数据分析的基本需求,当前以及未来一段时期内将主要通过分布式数据库或者分布式计算集群来对存储于其内的海量数据进行由浅入深的分析和分类汇总。

大数据主要分析模式和分析技术

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 希捷携手首云,打造视频监控数据归档方案

    首云冷云存储的核心硬件采用了希捷ExosE4U106高密度JBOD,希捷4U106采用全冗余架构设计,采用希捷独有的抗震减噪技术,4U空间可配106块磁盘;机箱提供管理接口,提供磁盘端口上下电等功能,大大降低了US3归档存储的占地、能耗和运维管理等投入。

    2024年1月29日
  • 高清智能“云”安防 监控云存储技术浅析

    高清和智能应用于安防行业越发广泛,业界就已经把如何存储解决大数据量的问题提到了研发攻关重点。由于IT行业云技术的较快发展与应用,很多企业为了对数据进行有效的管理,于是就引入了云的概念,云储存便开启了它奇幻漂流之旅。云储存作为安防发展的重要技术根据,为安防行业发展铺路。

    2024年4月10日
  • 云存储技术解决视频监控风险及碎片问题

    面对视频监控系统中大量的数据和应用需求,网络存储技术找到了新的用武之地。未来视频监控后端设备的发展方向,除云存储之外,智能存储概念正在深化。

    2024年4月10日
  • 浪潮发布新一代G5存储 助力企业运筹决胜新数据时代

    多年来,浪潮一直聚焦存储技术的研发与解决方案的创新,本次大会首次提出“云存智用,运筹新数据”的全新存储愿景,是浪潮十几年来存储理念的一次重大升级。浪潮存储产品线总经理李辉表示:“新数据时代中产业形态和需求不断升级。浪潮存储认为作为领先的IT厂商,只有先通过存储平台实现了‘灵活适配并满足云环境需求’、‘支持并面向智能应用发展’以及获得‘共享、管理及挖掘数据价值’的能力,以‘云存智用 运筹新数据’,才足以助力企业迎战时代大潮,实现业务质效跃升。”

    2024年1月27日 资讯
  • 同有为平安城市构建融合数据存储解决方案

    导读:该方案将大容量、高密度的硬件与创新优化的软件深度结合,成倍提升存储容量的同时,解决了海量存储带来的带宽压力;数据分层技术的完美应用更让安防大数据带来的海量数据处理与整合难题迎刃而解。

    2024年1月19日
  • 浅谈大数据存储与瓶颈及应对之策

    但是如何有效、快速、可靠地存取这些日益增长的海量数据成了关键的问题。传统的存储解决方案能提供数据的可靠性和绝对的安全性,但是面对海量的数据及其各种不同的需求,传统的解决方案日益面临越来越多的问难,比如数据量的指数级增长对不断扩容的存储空间提出要求,实时分析海量的数据对存储计算能力提出要求。

    2023年9月16日