解析图像识别AI会犯的“低级错误”

对于图像识别技术来说,有时原因是因为给定的训练数据集出了问题。比如近日Facebook人工智能实验室的一项新研究就表明,科技巨头销售的物体识别算法在识别来自低收入国家的物品时表现得更差。  

解析图像识别AI会犯的“低级错误”

目前的人工智能技术已经非常擅长识别图像中的物体,但仍然很容易犯些“低级错误”。
在部分情况下,只需在人眼不可见的静态噪声中添加一些可选的笔触或图层,就可以“愚弄”AI图像识别系统,这有时甚至会造成致命的后果。
例如,曾有研究人员将打印的涂鸦贴在路牌上导致AI自动驾驶系统将限速标志识别为禁行,腾讯科恩实验室也曾发布报告称路面上难以注意到的小贴纸就能误导特斯拉错误判断并驶入反向车道。
这些误导标志被称为“对抗补丁”,研究人员现在正忙于开发保护人工智能系统不受这些例子影响的方法。
但在去年的一篇论文中,GoogleBrain和普林斯顿大学的一组研究人员,包括该领域最早的研究人员之一IanGoodfellow,认为这些新研究过于理论化,没有抓住重点。
他们说,虽然大部分研究的重点是保护系统免受特别设计的标志的干扰,但黑客可能会选择一种更直接的方法:使用一张完全不同的照片,而不是在现有照片上叠加噪音图案。这也可能导致系统误判断。这一批评促使加州大学伯克利分校的博士生DanHendrycks编写了一个新的图像数据集。
这个数据集中包括一些容易被误判的图像,比如松鼠(它们通常会被误认为是海狮)或蜻蜓(它们会被误认为是井盖)。他表示:“这些例子似乎更难防范。”
人工合成的对抗标志需要知道所有的人工智能系统是如何防范误判的。但相比之下,即使人工智能系统各自的防范措施不同,这些自然的例子也能很好地发挥作用。
Hendrycks上周在国际机器学习会议上发布了该数据集的早期版本,包含大约6000幅图像。他计划在几周内发布最终版本,其中包括近8000个图像。他打算让研究团体使用该数据集作为基准。
换句话说,与其直接在图像上训练图像识别系统,不如将其保留下来只用于测试。他说:“如果人们只是用这些数据集训练系统,那么系统仅仅只是记住了这些例子。这样虽然系统已经解决了误判这些图像的问题,但它们对新图像的误判程度并没有得到改善。”
破解这些令人困惑的误判背后的逻辑,可能会让系统的适应性更广。“为什么系统会把蜻蜓和鳄梨色拉酱搞混?”Hendrycks开玩笑道,“根本不清楚为什么会犯这样的错误。”为什么人工智能会误判?
有些人工智能系统的底层计算机制是已知的,有些则不是,这被称为“黑箱”,即该系统的开发者可能都无法完全了解系统如何做出决策。
对于图像识别技术来说,有时原因是因为给定的训练数据集出了问题。比如近日Facebook人工智能实验室的一项新研究就表明,科技巨头销售的物体识别算法在识别来自低收入国家的物品时表现得更差。
据报道,研究人员测试了五种流行的现成对象识别算法――微软Azure、Clarifai、谷歌CloudVision、亚马逊Rekognition和IBMWatson。而测试的图像包括来自全球不同阶级的家庭的家中用品的图像。这些图像可能来自非洲布隆迪的一个月收入27美元的家庭,也可能来自乌克兰一个月收入1090美元的家庭。
研究人员发现,与月收入超过3500美元的家庭相比,当被要求识别月收入50美元的家庭的物品时,物体识别算法的出错率要高出10%左右。
而且在识别来自美国的照片时,算法的准确性也比识别来自索马里或布基纳法索的照片要高出15%至20%。
研究人员称,在一系列用于图像识别的商业云服务中,这些发现具有一致性。
人工智能算法的这种“偏见”还有很多别的例子,其中一种常见的推测原因是用于培训的数据有了偏颇――它们往往反映了相关工程师的生活和背景。由于这些人通常是来自高收入国家的白人男性,他们训练的算法所要识别的世界也是如此。
研究人员称,视觉算法的训练数据主要来自欧洲和北美,“在人口众多的地理区域,特别是非洲、印度、中国和东南亚,对视觉场景的采样严重不足”。
由于美国科技公司在人工智能领域处于世界领先地位,这可能会影响到从照片存储服务、图像搜索功能到更重要的AI安全摄像头、自动驾驶汽车等系统的方方面面。
“评估人工智能系统并不一定容易,因为没有执行这类评估的标准基准。”帮助开展这项研究的Facebook人工智能研究科学家劳伦斯・范德马顿(LaurensvanderMaaten)在接受采访时表示。
“对抗这种偏见最重要的一步是,在培训AI系统之前的数据收集环节就要谨慎得多。”
值得注意的是,科技公司们经常把自家人工智能产品宣传为“人人平等、人人可得”,但实际上,它们可能只是在按照自己的形象来评估、定义和塑造世界。

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 甘肃省出台实施方案 大力促进新一代人工智能产业创新发展

    甘肃省将深入实施创新驱动发展战略,加快人工智能与经济社会深度融合,以提升新一代人工智能科技创新能力为主攻方向,加强智能理论研究,拓展人工智能应用,为加快建设创新型甘肃和决胜全面建成小康社会提供科技支撑。这是记者从省政府办公厅近日下发的《甘肃省新一代人工智能发展实施方案》中获悉的。

    2024年1月31日
  • 《中国新一代人工智能发展报告2020》发布

    据报告观察,2019年,美国、德国、日本、韩国、俄罗斯等国均强化人工智能发展战略迭代,对其国家人工智能战略进行了更新,以更好迎接快速发展的人工智能科技创新和经济社会发展新形势。人工智能对科技、产业和社会变革的巨大潜力也得到全球更多国家认同,16个国家新发布了国家人工智能发展战略或计划,另至少还有18个国家正在筹备制定其人工智能发展计划。

    2024年1月28日
  • 北京市发布《北京促进人工智能与教育融合发展行动计划》

    北京市教委7月26日下发了《北京促进人工智能与教育融合发展行动计划》。《计划》提出北京市人工智能教育三个阶段的发展目标,并明确了在基础教育、职业教育和高等教育阶段的主要任务。其中在基础教育阶段,《计划》支持加快人工智能素养教育,建议将人工智能学习纳入综合社会实践活动和开放性科学实践活动。

    2024年1月29日
  • 《2020北京人工智能发展报告》发布 北京在人工智能17个领域领跑全国

    近年来随着人工智能的快速发展,算法歧视、数据隐私泄露等伦理与社会问题逐渐凸显。北京高度重视人工智能伦理安全问题,率先提出人工智能伦理安全“北京方案”,为人工智能健康发展营造了良好环境。

    2024年1月28日
  • 逾20省份发布30余项专项政策 人工智能“规模化落地”

    在新一代人工智能发展规划推进办公室日前召开的2019年工作会议上,科技部副部长李萌介绍,2019年将着重加快项目部署实施,强化基础研究,加大芯片、工具和平台等研发力度,重视人才培养,加快基础设施建设,促进产学研合作,扩大应用示范,强化对实体经济的引领作用,完善促进人工智能发展的政策法规。

    2024年1月29日
  • 聚焦人工智能与未来法治构建 《上海倡议》发布

    以“发展应用与法治保障”为主题的“人工智能与法治”高端研讨会今天在上海举行。现场还发布了《人工智能与未来法治构建上海倡议》,从四大方面务实提出了人工智能与未来法治发展的14项具体倡议,坚持面向全球、面向未来、面向和平,坚持以人为本、向善安全、创新发展、共享成果、可靠可控、规范有序。

    2024年1月31日