制约安防芯片发展的主要问题及瓶颈

对于AI安防芯片来说,"芯片+算法"的整合是最重要的。而对于具体一款芯片,最主要的指标应该是价格和稳定性。芯片是"硬"的,算法是"软"的,如何能将两者更好的结合起来,这就需要加强芯片对底层运算加速算法的适应性。现有芯片的问题,从技术角度来说,对前端的AI芯片算力的要求,对存储问题的解决,都很重要,都需要靠算法和芯片架构一起来改善,比如说现在的算法就还比较耗带宽。

制约安防芯片发展的主要问题及瓶颈

    一、AI芯片的数据存储问题及瓶颈
  在提高AI安防芯片性能,加强算力的同时,芯片中最为关键的其实并不是单纯提升算力,如果不进行存储优化,那么芯片实际提供的计算力会大大降低。这也是制约AI安防芯片规模化应用的问题之一。要突破AI芯片的瓶颈,并不能只是简单的增加计算算力,而是一定要把数据存储管理做好。
  传统芯片中,采用的是冯・诺伊曼架构,计算模块和存储单元是分开的,”内存墙”问题很严重。而AI依赖的算法是一个庞大和复杂的网络,有很多参数要存储,也需要完成大量的计算,需要巨大存储容量,高带宽、低延时的访存能力。很多AI初创芯片公司,实际上都在努力解决这个问题。
  而我们的思考是,不能采取通常的先有计算指令然后提供数据的方式,应该从存储子系统的优化入手,让数据在存储之间的搬移过程之中完成计算。
  这也可以叫做”基于memory的计算”,而不是”基于计算的memory”。
  当前芯片领域对于AI算法的关注还较多,针对AI的结构改进尝试还比较少。之后,memory与computing结合的尝试,我相信会是一个好的方向。
  二、安防芯片同质化问题严重
  对于AI安防芯片来说,”芯片+算法”的整合是最重要的。而对于具体一款芯片,最主要的指标应该是价格和稳定性。芯片是”硬”的,算法是”软”的,如何能将两者更好的结合起来,这就需要加强芯片对底层运算加速算法的适应性。现有芯片的问题,从技术角度来说,对前端的AI芯片算力的要求,对存储问题的解决,都很重要,都需要靠算法和芯片架构一起来改善,比如说现在的算法就还比较耗带宽。再具体应用上,AI安防芯片在安防摄像头中作为协处理器,目前已经被主控芯片集成了,所以单纯提供AI加速器并不占优势。而开发编解码能力、加密及AI能力三合一的芯片,为摄像头提供安全加密则是重点所在。这也是安防相对于其他芯片厂商不同的一点。从行业角度来说,现有AI芯片在安防行业应用落地上的主要问题,其实是同质化。很多AI芯片厂商产出的芯片并没有太大差别,一方面很多芯片达不到现有安防行业对前端AI芯片的要求,一方面又容易陷入芯片同质化竞争。现在的安防芯片格局下,其实已经存在垄断的生态,有大的行业玩家存在,那么做AI安防芯片如何找到自己的价值点,并做到差异化还是最难的。
  三、芯片成本问题有待突破
  在智能安防监控领域,芯片是硬件设备中成本占比最高的零组件之一,也是安防视频监控设备的核心部件,通过前端摄像机内置人工智能芯片,可实时分析视频内容,检测对象,识别人、车属性信息,并通过网络传递到后端人工智能的中心数据库进行存储。
  目前,安防视频设备中所需要的处理器芯片主要包括网络摄像机中的SoC芯片、后端DVR/NVR中的SoC芯片以及深度学习算法、加速器芯片以及前端模拟摄像机中的ISP芯片四种类型。目前,高性能的深度学习算法加速器芯片仍由国外芯片厂商提供,但其余三类处理器芯片已实现了较大程度的国产化替代。安防领域最主流的深度学习芯片方案是GPU,但GPU存在成本、效率、功耗等瓶颈。
  当前在安防智能化进程中,算法层面已经接近成熟,而在芯片成本上还存在一些问题。为了实现智能化的功能(即运行深度学习算法),安防监控系统的前端和后端设备中需要加入英伟达或是英特尔等国际大厂所设计的GPU、FPGA或者ASIC加速芯片,与原有的承担图像处理和编解码功能的主处理器芯片一起构成双芯片方案,而采用这些芯片一般要为安防监控设备新增高额成本(2017年仅前端摄像机中采用的AI加速器芯片的成本就高达上百美元),因此导致智能化设备的成本普遍偏高,在很大程度上影响了智能化的大面积应用。
  四、AI芯片的易用性有待提升
  现在的安防市场上,已经出现了很多前端的AI加速器,但实际它们在应用上,还存在一些问题。
  第一是价格太高。第二是可编程性不足。原先的通用芯片CPU很容易能实现编程,但AI加速模块中并没有指令集,无法编程,需要手工去调整。
  在安防领域也是一样,厂商普遍反映的,不是AI芯片的性能,而是无论AI初创企业,还是传统大厂设计的加速器都很复杂,AI加速器很难被用起来。
  一般来说,通用芯片难以负荷对计算的高要求,AI专用芯片则在可编程性、灵活性上有所欠缺。目前应用较多的集成度高的Soc,将不同计算架构芯片集成在一起,需要多套编程程序,运行就容易带来问题。这也是安防芯片厂商们,尤其是在安防前端应用上面临的难题。
  而业内目前看好的一种方式,就是将不同的芯片架构结合在一起,这就是”异构计算”。
  异构计算的长处在于,能实现比较好的适应性和灵活性,在通用性和专用性上达成一个折衷。既能高效的处理数据,又能相对保证算法的及时更新和迭代。这也是我们在探索的一个方向。
  现在在安防、自动驾驶等这些边缘端的市场,对芯片的综合要求非常高。芯片需要处理的数据量很大,同时对于性能、性价比、性能功耗比要求也很高。

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 希捷携手首云,打造视频监控数据归档方案

    首云冷云存储的核心硬件采用了希捷ExosE4U106高密度JBOD,希捷4U106采用全冗余架构设计,采用希捷独有的抗震减噪技术,4U空间可配106块磁盘;机箱提供管理接口,提供磁盘端口上下电等功能,大大降低了US3归档存储的占地、能耗和运维管理等投入。

    2024年1月29日
  • 高清智能“云”安防 监控云存储技术浅析

    高清和智能应用于安防行业越发广泛,业界就已经把如何存储解决大数据量的问题提到了研发攻关重点。由于IT行业云技术的较快发展与应用,很多企业为了对数据进行有效的管理,于是就引入了云的概念,云储存便开启了它奇幻漂流之旅。云储存作为安防发展的重要技术根据,为安防行业发展铺路。

    2024年4月10日
  • 云存储技术解决视频监控风险及碎片问题

    面对视频监控系统中大量的数据和应用需求,网络存储技术找到了新的用武之地。未来视频监控后端设备的发展方向,除云存储之外,智能存储概念正在深化。

    2024年4月10日
  • 浪潮发布新一代G5存储 助力企业运筹决胜新数据时代

    多年来,浪潮一直聚焦存储技术的研发与解决方案的创新,本次大会首次提出“云存智用,运筹新数据”的全新存储愿景,是浪潮十几年来存储理念的一次重大升级。浪潮存储产品线总经理李辉表示:“新数据时代中产业形态和需求不断升级。浪潮存储认为作为领先的IT厂商,只有先通过存储平台实现了‘灵活适配并满足云环境需求’、‘支持并面向智能应用发展’以及获得‘共享、管理及挖掘数据价值’的能力,以‘云存智用 运筹新数据’,才足以助力企业迎战时代大潮,实现业务质效跃升。”

    2024年1月27日 资讯
  • 同有为平安城市构建融合数据存储解决方案

    导读:该方案将大容量、高密度的硬件与创新优化的软件深度结合,成倍提升存储容量的同时,解决了海量存储带来的带宽压力;数据分层技术的完美应用更让安防大数据带来的海量数据处理与整合难题迎刃而解。

    2024年1月19日
  • 浅谈大数据存储与瓶颈及应对之策

    但是如何有效、快速、可靠地存取这些日益增长的海量数据成了关键的问题。传统的存储解决方案能提供数据的可靠性和绝对的安全性,但是面对海量的数据及其各种不同的需求,传统的解决方案日益面临越来越多的问难,比如数据量的指数级增长对不断扩容的存储空间提出要求,实时分析海量的数据对存储计算能力提出要求。

    2023年9月16日