人脸识别经常听,但你知道它是如何实现的吗?

人脸识别经常听,但你知道它是如何实现的吗?人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。

【安防在线 www.anfang.cn】人脸识别,一种基于人的脸部特征信息进行身份认证的生物特征识别技术。近年来,随着欧美发达国家人脸识别技术开始进入实用阶段后,人脸识别迅速成为近年来全球的一个市场热点。

人脸识别技术包含三个部分:

人脸识别经常听,但你知道它是如何实现的吗?

1.人脸检测

面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:

①参考模板法

首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸。

②人脸规则法

由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸。

③样品学习法

这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器。

④肤色模型法

这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。

⑤特征子脸法

这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子空间的投影之间的距离判断是否存在面像。

值得提出的是,上述5种方法在实际检测系统中也可综合采用。

2.人脸跟踪

面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。

3.人脸比对

面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。主要采用特征向量与面纹模板两种描述方法:

①特征向量法

该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。

②面纹模板法

该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。

人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 我们距离云还有多远?

    云计算从最初的概念热炒到2015年真正崛起,并步入今天的加速发展期。但是,据调查发现,云计算从一个引领着信息通信产业发展方向的创新技术,转变为现实的“生产力”,仍然有很长的路要走。

    2024年4月12日
  • 《云计算白皮书》 2016发布 配合多项政策指导市场发展

    2016年9月1号上午,中国信息通信研究院在2016可信云大会上正式发布《2016云计算白皮书》。这也是中国信通院自2012年开始,第三次发布《云计算白皮书》。

    2024年1月28日
  • 边缘计算技术解读及优势分析

    假如你手机里有个文件太大装不下了,云计算的解决方法是把它传到千里之外的服务器中心帮你存着,雾计算是传到小区的服务器帮你存着,边缘计算是看看你的电脑、冰箱、洗衣机谁有地方就帮你存哪……显然,边缘计算运算设备和终端设备之间距离最近,传输效果最直接,还可以利用近距离网络和局域网络,当然运算效率也会更高一点。

    2024年4月13日
  • 美发布《国家战略性计算计划(更新版):引领未来计算》

    11月14日,美国白宫科学技术政策办公室(OSTP)发布《国家战略性计算计划(更新版):引领未来计算》。与2016年的计划相比,更新版最终更加侧重于计算机硬件、软件和整体基础设施,以及开发创新的、实际的应用程序和机会,以支持美国计算的未来。

    2024年1月30日
  • 《中国云计算产业发展白皮书》发布 5G+云+AI是重要引擎

    10月12日,国务院发展研究中心国际技术经济研究所正式对外发布《中国云计算产业发展白皮书》。

    2024年1月30日
  • 新一代国产云计算操作系统发布 安全性能显著增强

    云计算是通过网络统一组织和灵活调用软件、运行平台、计算与存储等各种资源,实现大规模计算的信息处理方式,具备超大规模、虚拟化、通用性、高可靠性、高扩展性等特点。据统计,2015年全球云计算产业规模约为1750亿美元,预计2019年可突破3000亿美元。

    2024年1月30日