【安防在线 www.anfang.cn】智东西4月29日消息,近日,麻省理工学院Auto-IDLabs研究小组研发了一个基于语音的新冠肺炎AI检测工具–Sigma。Sigma可以“听”出健康人和新冠肺炎患者咳嗽声的差别,从而区分出用户是否感染了COVID-19。
与之前的AI抗疫方案不同的是,研究小组希望用“众包”的方式获取模型训练数据,并根据实时训练数据同步更新模型。
4月9日,研究小组在学术网站arXiv上发表文章介绍Sigma计划,文章名称为《“嗨Sigma,我感染了冠状病毒吗?”呼吁用新的AI方法来支持应对新冠病毒大流行的专业医疗保健人员(“HiSigma,doIhavetheCoronavirus?”:CallforaNewArtificialIntelligenceApproachtoSupportHealthCareProfessionalsDealingWithTheCOVID-19Pandemi)》。
论文链接:https://arxiv.org/pdf/2004.06510.pdf
一、语音识别算法能”认出”肺炎患者咳嗽声
截至4月22日,全球新冠肺炎累计确诊人数已经超过250万,死亡人数超17万。巨大的感染者基数使医疗系统不堪重负,疑似病例检测同样需要占用医疗资源。在这种情况下,已经有许多研究机构推出AI解决方案,协助医疗人员进行COVID-19检测或提供预检。
但是,麻省理工学院Auto-IDLabs研究小组指出,现有的研究要么使用静态数据集、要么在大企业牵头下进行,都具有一定局限性。静态数据集难以反映出疫情的发展变化,大公司牵头的方案也因隐私风险而饱受质疑。
Auto-IDLabs研究小组试图解决这些问题。最终,他们从之前的一项研究中得到了灵感。该研究证明,AI模型可以通过咳嗽声录音,区分出肺炎患者与正常人,哪怕是来自廉价手机的录音也不会影响判断结果。
对新冠病毒感染者咳嗽声的研究也得出了相同结论。
▲AI模型可识别出健康人咳嗽声和感染者咳嗽声的不同
在针对神经类疾病患者的另一项研究中,语音识别算法也比人类专家更早判断出病人发病情况(样本量小于50的精神病患者和样本量小于1000的认知障碍患者)。
因此,研究小组提议,可以设计一款AI语音识别工具,并用大规模收集的实时数据对其进行训练。
经过几次尝试,研究小组打造出了AI语音识别模型Sigma。
二、模型搭建:基于CNN,学会区分健康人和肺炎患者
Sigma模型基于一个卷积神经网络(CNN,convolutionalneuralnetwork)进行训练。
首先,研究人员利用一个日常谈话数据库对CNN模型进行预训练;
然后,研究人员用大量相似但不同的数据训练模型。这一过程被称为迁移学习,可以提高模型的预测能力。
在迁移学习的第一阶段中,模型需要学习分辨咳嗽和不咳嗽的声纹。研究人员认为这一阶段最为重要,因此,他们比较了支持向量机(SVM)、K-近邻算法(k-NearestNeighborsalgorithm)、随机森林(RandomFores)、逻辑回归(LogisticRegression)这4种浅层机器学习算法的准确性,试图找出最佳方案。
结果显示,逻辑回归算法的准确性最高。
接下来,研究人员利用不到200个样本数据,借助主成分分析方法(PrincipalComponentAnalysis)制作出一个图表,对健康人咳嗽和新冠肺炎咳嗽分别进行了聚类分析(Clusteranalysis),提取两种咳嗽的特征。
▲病人不同病程阶段咳嗽声的特征
▲COVID-19感染者咳嗽声的特征
文章中并未给出准确率数值,但写到经过迁移学习后,Sigma模型能够主动区分出这两类人群。
三、模型发展:用大规模实时数据进行迁移学习
为了进一步提升Sigma模型的准确性,研究人员计划在未来收集大量真实数据,让模型进行深入迁移学习。他们强调:“如果我们有更多的临床数据和志愿者,我们就可以做更多”。
他们将从4个主要渠道获取信息:招募150名新冠肺炎患者和3000名接触者,同时固定收集墨西哥、西班牙和美国这三个国家的感染者咳嗽声音频。
此外,研究人员呼吁更多新冠肺炎患者通过社交媒体渠道提交录音。文章中写明了对录音的要求:
1、录制内容可以是咳嗽声、数字从0到9或语气词“Ommmmmmmmm”;
2、录音时长为12秒。
研究人员称,如果能够建立一个足够大的实时数据来源,Sigma模型还能被开发出更多功能:
对于已经确诊新冠肺炎、但在居家隔离的患者来说,Sigma可以进行一项纵向音频测试,为用户提供是否需要医院就诊的建议;Sigma还可以筛选出病情最严重的新冠肺炎患者,优先为他们分配重症监护病房。
结语:Sigma模型更为精确,期待早日落地
麻省理工学院Auto-IDLabs研究小组推出的Sigma模型利用大量实时数据进行训练,相比于传统的AI训练方法更为精确,或能辅助医生做出临床决策。
目前这个计划还在进行中,期待它能够尽快臻于成熟,在抗疫进程中发挥作用。
该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们。