【安防在线 www.anfang.cn】 近年来,随着视频监控系统的大量普及安装,监控系统所获取并存储的视频数据容量正以惊人的速度增长。从理想角度看,这些视频包含了现实世界中的大量信息,应该为我们的管理及安保工作带来巨大的价值。但是从现实角度看,依靠人工处理包含数以万计的视频数据集,并从中获取信息,是非常困难、甚至是不可能的。也因此,监控系统所获取并存储的绝大部分视频数据成了存储在硬盘中无人使用的数据,使我们陷入了一个数据爆炸却信息匮乏的困境。
视频数据之所以无法成为我们能够直接使用的信息,是因为两者之间存在着“语义鸿沟”,即计算机所理解的低层次图像特征与人类所理解的高层次语义信息之间的差异。举例来说,人类在观看一段监控视频时,可以迅速结合先验知识判断出视频中奔跑的行人、交谈的人群、甚至行人之间的相互关系及情绪等更加细节的信息,而计算机只能获取图像色块、区域纹理或者运动方向等图像特征。
数据挖掘技术架起人机“沟通桥梁”
数据挖掘技术正是一座架在“语义鸿沟”之上的桥梁,使我们能够从无法直接理解的图像特征信息中获取到能够应用的语义信息。但是现阶段视频数据的挖掘在数据挖掘技术领域还是一个难题,与文本数据不同,视频数据是非规则的且信息量非常庞大的数据格式,它不具备文本数据那样的语法及段落等规则;另外,视频中包含的信息量相当庞大,对于视频数据的特征融合及信息提取具有较高的难度。所以总体来看,视频数据挖掘技术目前还处于初级阶段,但是有部分技术已经到了较成熟的规模化应用阶段,例如车牌识别技术、视频入侵检测技术等。
视频数据挖掘解决方案的用户需求
如何从海量视频数据中提取到我们所能应用的信息,甚至是经过归纳总结的知识,无疑是监控系统各个行业用户都迫切需要解决的问题。但是视频包含了非常庞大的信息量,不同行业客户对于视频信息的提取及使用方式有很大的差异性。这就要求监控技术的供应商能够针对不同行业客户的需求提供不同的视频数据挖掘解决方案。举例来说,公安行业用户在日常治安管理工作中需要从视频中及时的获取治安异常事件的信息,例如斗殴事件或者群聚性事件,从而可以及时进行处理;在进行刑侦工作时要对大量视频进行目标查找,需要从视频中获取目标的身份信息,例如人员身份信息及车辆牌照信息等。而高速公路行业用户需要在收费处获取车辆牌照信息,在道路监控视频中获取异常事件信息,例如拥堵事件、停车等,还需要提取例如车流量、平均车速等统计类信息以实现管理优化。还有一些视频信息是各行业用户都需要的,例如视频质量信息,即从视频数据中获取的当前视频设备运行状态是否正常的信息量,这对于各行业监控系统的运行维护都有着重要实用价值。
图表 1视频数据挖掘前端实现拓扑图
该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们。