【安防在线 www.anfang.cn】
俗话说“百闻不如一见”,视觉信息在人类活动所涉及的信息中占据的比重最大,而且由于其空间和结构特性使其不能为任何其他信息所替代。智能视频监控技术源于计算机视觉技术,作为人工智能研究的一个分支,是一项新兴的安防技术,有着广阔的发展前景。本文从智能分析技术应用现状技术技术发展瓶颈两方面谈论智能分析应用现状。
智能视频分析应用现状
当前,智能视频分析技术越来越受到安防界的重视,不少项目已经开始应用智能视频分析功能。智能视频分析主要涉及哪些领域?有哪些设备呢?
目前市场上存在的设备种类多样,主要分为嵌入式视频分析产品与纯软件视频分析产品两大类。嵌入式视频分析产品的主要表现形式有智能摄像机、智能DVR等,其一般应用在监控系统的前端,分布式的处理方式具有占用带宽小,不受传输影响的优点,缺陷是往往只能针对特定的一路或者几路进行分析,对视频分析技术的算法与前端设备性能有较大的依赖。这一类的产品主要应用在一些重点的行业,例如军队、金融、教育、小区等,企业在销售模式上主要以产品形式为主导。纯软件视频分析产品主要运行于普通PC或服务器上,形成智能视频分析服务器,相比嵌入式,这种方式能处理更多路数的视频和实现更为强大的功能,却也不可避免的存在占用带宽大的缺点,对服务器性能要求较高。这一类的产品应用相对广泛,平安城市是其应用的重要体现,企业在销售模式上主要以分析模块与解决方案为主导。
当前智能视频分析技术主要包括:行为分析、视频识别技术、生物识别领域的视频分析应用、机器视觉方面应用。目前,这几种技术都比较常用,尤其是行为分析和生物识别技术已经得到了广泛的应用。
按照算法层面的差异性,智能视频分析相关技术可分为周界防范、行为识别、面部识别、车牌识别、技术统计、密度分析、画质分析等等。相关设备主要以三种形态为主,第一种,也是最常用的嵌入式前端分析设备;第二种,PC式后端分析设备;第三种,以灵动处理器为核心开发的PC式前端分析设备。目前,最为稳定也是最常用的是第一种,即嵌入式前端分析设备,其特点是布点灵活、稳定,易于管理和维护。上海卓扬智能视频分析相关案例主要包括教育行业、金融、监所、文博等,并以行业细分出很多具体的与智能相关的功能。除了周界以外还包括粘贴、尾随、非正常人脸、剧烈动作、虚拟墙、偷盗检测等。
未来发展四大技术瓶颈
是不是视频分析系统就是万能的呢?其存在哪些方面的不足呢?在实际环境中,光照变化无常、目标运动复杂性、遮挡、目标与背景颜色相似、杂乱背景等都会增加目标检测与跟踪算法设计的难度。我们可具体来看一下影响智能分析应用的几个方面:
1、背景的复杂性
光照变化引起目标颜色与背景颜色的变化,可能造成虚假检测与错误跟踪。采用不同的色彩空间可以减轻光照变化对算法的影响,但无法完全消除其影响;场景中前景目标与背景的相互转换,与行李的放下、拿起,车辆的启动与停止;目标与背景颜色相似时会影响目标检测与跟踪的效果;目标阴影与背景颜色存在差别通常被检测为前景,这给运动目标的分割与特征提取带来困难。
2、目标特征的取舍
序列图像中包含大量可用于目标跟踪的特征信息,如目标的运动、颜色、边缘以及纹理等。但目标的特征信息一般会随时变化的,选取合适的特征信息保证跟踪的有效性比较困难。
3、遮挡问题
遮挡是目标跟踪中必须解决的难点问题。运动目标被部分或完全遮挡,又或是多个目标相互遮挡时,目标部分不可见会造成目标信息缺失,影响跟踪的稳定性。为了减少遮挡带来的歧义性问题,必须正确处理遮挡时特征与目标间的对应关系。大多数系统一般是通过统计方法预测目标的位置、尺度等,都不能很好地处理较严重的遮挡问题。
4、兼顾实时性与健壮性
序列图像包含大量信息,要保证目标跟踪的实时性要求,必须选择计算量小的算法。健壮性是目标跟踪的另一个重要性能,提高算法的健壮性就是要使算法对复杂背景、光照变化和遮挡等情况有较强的适应性,而这又要以复杂的运算为代价。
针对上述的问题,如何来提升视频智能分析系统的有效性与实用性,我们可以从下述方面加以改进或是提升:优化算法,制定针对场景的分析策略,使得算法的准确性得以增加;合理选择摄像机安装角度,分析的准确程度,绝大部分取决于角度的合理性;增加辅助补充设备,像增加补光灯或是红外光源,使在各种复杂条件下能加以应用。
该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们。