云存储系统核心技术在安防行业创新和发展

作为安防监控领域的云存储系统,如果不改变这种结构化数据的存储思路,那么将是无法支撑云计算以及大数据智能分析发展需要的。作为安防监控领域的云存储首先面临的就是对文件系统的改造,针对视频数据的特点,在数据持续写入时需要强关联其时间属性,同时优化磁盘的存储空间,合理安排数据的存储资源分配。

【安防在线 www.anfang.cn】
  云存储系统的核心技术

  安防产业的蓬勃发展离不开对海量视频和图片数据的深入挖掘和分析。早期的存储仅仅是将数据进行存储,经过这些年的发展,已经注重从数据中获取真实需要的关键信息,并已成为具体的业务提供支撑。云存储不但在满足海量数据存储需求上契合了安防行业的发展趋势,同时在应用性和专业化程度上也逐渐发展和深化。那么,带有行业属性的云存储系统的出现就是一个必然的过程。

  安防行业与互联网行业应用有着明显的差别。在互联网应用中有着数以亿计的用户,这些用户分布在世界各地而且应用需求也千差万别。互联网用户产生的数据总量虽然非常庞大,但是数据信息类型却也非常复杂,单个数据文件大小相对较小。

云存储系统核心技术在安防行业创新和发展

  安防监控领域的视频数据则具有非常明显的特征,其数据流依照时间顺序持续产生,并且数据量非常庞大。随着高清和超高清摄像机的不断加入,数据量的爆炸性增长可想而知。这类长时间、大流量的数据在进行存储时对传统的文件系统产生了非常大的压力,传统的文件系统在数据的存储上很少考虑到数据连续性问题,在磁盘空间的利用率上也尽可能地将数据的存储粒度降低以满足P2P式的文件下载访问需求。而这这种方式对视频流数据则极为不利,系统在从存储中提取数据后需要耗费大量资源对数据按照时间顺序进行重组,而且为了提取某段长时间的视频数据磁盘寻址延时和等待延时会几何级数地增长,照成视频数据提取和分析时间过长,阻碍了安防监控应用的发展。

  作为安防监控领域的云存储系统,如果不改变这种结构化数据的存储思路,那么将是无法支撑云计算以及大数据智能分析发展需要的。作为安防监控领域的云存储首先面临的就是对文件系统的改造,针对视频数据的特点,在数据持续写入时需要强关联其时间属性,同时优化磁盘的存储空间,合理安排数据的存储资源分配。在对文件系统进行全面优化后形成一套适合视频数据存储和读取的具有流式数据特点的云存储文件系统,也称为流式文件系统。

  此外虚拟化技术的应用也是衡量一套存储系统是否成为真正意义上的云存储的一个重要标志。虚拟化技术分为两个方面来探讨,最基础的技术要求是对云存储系统内所有存储资源的整合。传统的NVR或者CVR堆叠模式虽然在发展的过程中有许多厂家也注意到了对资源的统一管理工作,但是其管理的粒度仍然是以单个存储设备作为基础的,这种程度的整合会导致系统的控制粒度过大、存储资源利用率偏低。而真正意义上的虚拟化整合则需要更加的细化,云存储在管理存储资源时需要能控制到存储设备上的最基础存储单元,因此通过对最基础存储单元的整合作为虚拟化的一个重要指标。对元数据管理服务器来说只有看得清楚、管得细致,了才能做到对存储资源的合理利用和优化整合。

  虚拟化的另一个重要特征就是具体实现完全透明。在虚拟化技术对存储资源进行整合之后对于上层系统而言应该呈现出一个完整的、唯一的存储资源池。存储资源池具有统一化、灵活性、可再分割、再调整的功能属性,而且这部分功能属性的具体实现是完全屏蔽在虚拟化系统内部的,不需要再有其他系统或者操作者进行干预。使用者所见到的仅仅是一个超大的存储资源池,他可以根据具体业务存储的需要从存储资源池中取出一部分空间用于某些视频数据的存储。使用者无需关心视频数据究竟是存放在云存储系统中的哪台存储主机的哪个磁盘上,具体的存储空间分配由虚拟化系统执行完成。同时使用者也不必担心数据的安全性问题,因为当用户改变存储策略、调整空间大小时虚拟化技术会自行对数据进行备份、迁移、覆盖。所有这些具体的执行对使用者都是透明的,使用者的精力可以完全集中在对自身业务的管理上来。

  集群化技术是除了虚拟化技术以外衡量云存储系统成熟度的另一个重要标志。在讨论云存储系统架构的时候我们探讨了系统采用松耦合非对称架构的必要性,在系统中衍生出元数据管理节点的同时,我们对其可靠性、稳定性、以及性能的要求随着云存储系统的不断膨胀也越来越高。单一节点或者双机HA模式在中小型的安防监控项目中还可以勉强胜任,一旦系统规模扩大其元数据管理节点的压力就会不断加强,其性能瓶颈直接会导致云存储系统可用度降低,甚至影响云存储系统的正常运行。集群化技术在云存储系统中的应用将能够很好的解决这些问题。元数据管理集群改变过去单兵作战的方式,采用成建制的集团军协同作战将各个元数据管理节点的系统性能形成合力共同为云存储服务。创建元数据管理集群需要专门开发用于集群组件的软件,集群软件的作用就是维持各个节点间的通信顺畅,并按照负责均衡的原则将大量待处理业务信息分派给具体的元数据管理节点来执行。多台元数据管理节点通过集群软件保持高度的统一性和可协调性,管理信息和监控信息数据在各个节点间的分布式数据库间同步,所有节点都具有独立完成业务处理工作的能力并保持集群的ALLACTIVE的状态。这样云存储系统的处理性能将不再受单一节点限制,当云存储需要扩容和提升系统性能时可以继续增加集群的元数据管理节点数目,以保持业务性能的线性增长。

  集群化技术的另一个优势就是提供了更高的可靠性。传统HA热备的双机模式为了提高可靠性实际是以一台服务器的资源浪费作为代价的,备机不参与任何业务处理,仅是等待主机故障后替换而已。而集群模式的优势在于集群中所有节点都是可以参与业务处理工作的,其中的一台或者几台服务器节点出现故障,集群软件可以很快发现问题并协调集群中的其它仍然运行良好的服务器节点接替故障机的工作,集群软件而言这只不过是简单地进行一次业务负载均衡调整和业务分配而已。

  集群化的这些优点除了在元数据管理节点群化外,对于数量庞大的存储节点依然适用。因为在云存储系统中资源的调度,业务的分派都是由元数据管理集群完成,存储节点仅需要保证存储业务的具体执行。通过对数据存储业务执行的合理分配,完全可以做到将过去各自为政的存储节点资源统一进行调配,发挥其最大的效率。同时倘若部分存储节点出现故障,元数据管理集群也能自动将数据存储业务调整到其他运行正常的存储节点上以满足高要求的N(元数据管理节点)+M(存储节点)集群可靠性。

  云存储的发展不仅仅需要考虑自身存储业务的需要,更重要的是需要考虑云计算、智能分析对大数据提取的性能需求。因此云存储系统的数据吞吐量就显得尤为重要,传统存储方案中某路视频流存储时基本是以存储设备为单位,那么在数据从单一的存储设备上提取时就是一个串行的过程,当提取量增大整个过程耗时就会非常严重。云存储系统就必须改变这一模式,现在较为先进的做法是存储时尽可能将某路视频数据到分散不同的存储设备上,而当需要提取数据时多台存储设备并发推送数据以形成系统级的高并发吞吐量。数据的分散粒度越大,提取时的速度就可能越快,然而如果分散过于凌乱则对数据的管理又增加了额外的系统开销。因而对分散的控制就显得格外重要,海康威视云存储系统的做法是在元数据管理集群中内嵌高效的数据存储任务分派离散算法,通过算法对当前云存储系统资源进行实时调度,做到最合理的分散存储,既兼顾管理的高效性同时又保证了系统级的并发读取速率,因此离散存储无疑是一种最为合理的方式。

  云存储在安防行业创新和发展

  近年来,安防行业不断向着IT化、应用化、智能化的模式深入发展,全国大力兴建城市级的安防监控和深化应用平台。

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 希捷携手首云,打造视频监控数据归档方案

    首云冷云存储的核心硬件采用了希捷ExosE4U106高密度JBOD,希捷4U106采用全冗余架构设计,采用希捷独有的抗震减噪技术,4U空间可配106块磁盘;机箱提供管理接口,提供磁盘端口上下电等功能,大大降低了US3归档存储的占地、能耗和运维管理等投入。

    2024年1月29日
  • 高清智能“云”安防 监控云存储技术浅析

    高清和智能应用于安防行业越发广泛,业界就已经把如何存储解决大数据量的问题提到了研发攻关重点。由于IT行业云技术的较快发展与应用,很多企业为了对数据进行有效的管理,于是就引入了云的概念,云储存便开启了它奇幻漂流之旅。云储存作为安防发展的重要技术根据,为安防行业发展铺路。

    2024年4月10日
  • 云存储技术解决视频监控风险及碎片问题

    面对视频监控系统中大量的数据和应用需求,网络存储技术找到了新的用武之地。未来视频监控后端设备的发展方向,除云存储之外,智能存储概念正在深化。

    2024年4月10日
  • 浪潮发布新一代G5存储 助力企业运筹决胜新数据时代

    多年来,浪潮一直聚焦存储技术的研发与解决方案的创新,本次大会首次提出“云存智用,运筹新数据”的全新存储愿景,是浪潮十几年来存储理念的一次重大升级。浪潮存储产品线总经理李辉表示:“新数据时代中产业形态和需求不断升级。浪潮存储认为作为领先的IT厂商,只有先通过存储平台实现了‘灵活适配并满足云环境需求’、‘支持并面向智能应用发展’以及获得‘共享、管理及挖掘数据价值’的能力,以‘云存智用 运筹新数据’,才足以助力企业迎战时代大潮,实现业务质效跃升。”

    2024年1月27日 资讯
  • 同有为平安城市构建融合数据存储解决方案

    导读:该方案将大容量、高密度的硬件与创新优化的软件深度结合,成倍提升存储容量的同时,解决了海量存储带来的带宽压力;数据分层技术的完美应用更让安防大数据带来的海量数据处理与整合难题迎刃而解。

    2024年1月19日
  • 浅谈大数据存储与瓶颈及应对之策

    但是如何有效、快速、可靠地存取这些日益增长的海量数据成了关键的问题。传统的存储解决方案能提供数据的可靠性和绝对的安全性,但是面对海量的数据及其各种不同的需求,传统的解决方案日益面临越来越多的问难,比如数据量的指数级增长对不断扩容的存储空间提出要求,实时分析海量的数据对存储计算能力提出要求。

    2023年9月16日