防盗报警探测器技术发展的新趋势

报警系统防盗报警系统的设备一般分为:前端探测器,报警控制器。报警控制器是一台主机(如电脑的主机一样)是用来处理,包括有线/无线信号的处理,系统本身故障的检测,电源部分,信号输入,信号输出,内置拨号器等这个方面组成,一个防盗报警系统报警控制器是必不可少的。

【安防在线 www.anfang.cn】
  防盗报警系统主要是由主机和探测器等组成,而探测器在防盗报警系统中又发挥着前端探测的作用;因此,探测器的性能稳定与否将直接关系到整个防盗报警系统能否正常的运行。

  报警系统防盗报警系统的设备一般分为:前端探测器,报警控制器。报警控制器是一台主机(如电脑的主机一样)是用来处理,包括有线/无线信号的处理,系统本身故障的检测,电源部分,信号输入,信号输出,内置拨号器等这个方面组成,一个防盗报警系统报警控制器是必不可少的。前端探测器包括有:门磁开关、玻璃破碎探测器、红外探测器和红外/微波双鉴器、紧急呼救按钮。

  探测器由传感器和信号处理器组成。在入侵探测器中传感器是探测器的核心,是一种物理量的转化装置,通常把压力、震动、声响、光强等物理量转换成易于处理的电量(电压、电流、电阻等)。信号处理器的作用是把传感器转化的电量进行放大、滤波、整形处理,使它能成为一种能够在系统传输信道中顺利转送的信号。而经过厂家们长期的技术研发与整合,市场上的探测器技术呈多元化方向发展。

防盗报警探测器技术发展的新趋势

  多元化的探测新技术

  多光束技术

  在众多的探测技术中,红外探测是最常见的一种探测技术;而在主动式红外探测器中,单光束技术发展至今已经难以满足人们对探测器的要求。主动红外探测器由红外发射机、红外接收机和报警控制器组成。分别置于收、发端的光学系统一般采用的是光学透镜,起到将红外光束聚焦成较细的平行光束的作用,以使红外光的能量能够集中传送。红外光在人眼看不见的光谱范围,有人经过这条无形的封锁线,必然全部或部分遮挡红外光束。接收端输出的电信号的强度会因此产生变化,从而启动报警控制器发出报警信号。

  主动式红外探测器遇到小动物、树叶、沙尘、雨、雪、雾遮挡则不应报警,人或相当体积的物品遮挡将发生报警。据HoneywellSecurity有关人士表示,主动红外探测器技术主要采用一发一收,属于线形防范,目前已经从最初的单束发展到了多束,这样能有效减少误报,加强防范的可靠性。为了扩大防范范围,克服普通主动红外对射防范范围不足的缺点,很多厂家研制出了多束光栅式主动红外对射,它实际上是单光束主动红外技术的延伸。

  防遮挡、喷涂和宠物检测技术

  探测器在工作的时候经常会受到一些人为的故意破坏或者其他物体不慎进入的干扰,从而发生误报或漏报的情况,而针对于此,各种避免的探测措施也随之不断被研究出来,那么最主要的几种技术是防遮挡、防喷涂和防宠物技术。

  据Bosch相关人士介绍,由于移动探测器通常基于探测入侵者辐射热量的被动红外线(PIR)技术,往往只要遮盖住探测器就能轻易骗过。防遮挡系统就是在探测器镜头被覆盖或被挡住时触发警报,而今天的防遮挡探测器的先进程度进一步提高,即使将透明发胶喷到镜头上也会触发警报。因此,一种被称之为“多点防遮挡和集成喷涂检测”技术就能充分保证探测器的探测可靠性。它包括镜后测光功能、红外线接收器反射功能和集成喷涂检测等功能,镜后测光功能可防止物质流过探测器正面;红外线接收器反射功能可防止物体接近或遮挡探测器。若在金库、保险库等场所中安装了具有防遮挡技术的探测器,抢劫分子就不会轻易得手。

  猫、狗、鸟等动物(甚至包括小孩)无意识进入探测区域造成的误报情况时常发生,而为了避免这种情况的发生,防宠物入侵探测技术就是专门针对小动物而研究设计的。例如,HoneywellSecurity就专门针对这种情况研究了“运动曲线分析”防宠物探测技术,该技术主要根据人(包括大人、小孩)与小动物的运动方式不同,进而由计算机软件进行分析,采用微处理技术融入到探测器里,这样宠物(40kg以下)不论在什么区域活动,探测器都不会报警。这样探测技术便为特殊情况做出了特殊处理,从而防止了误报的发生。

  微波墙技术

  在科学技术日新月异的发展环境下,许多新的探测技术不断地涌现出来,而为了更好地适应各种安防等级不同的应用场所,厂家们也是尽显浑身解数,不断创新和改良自己的探测技术,以满足应用的需求。

  对于电站、监狱、军事设施、高风险工业区域等高风险等级的防护场所,探测器需要有高稳定性和高抗漏报功能,因此,微波墙探测器是其最好的选择。深圳市华际电子系统有限公司的总经理余刚谈到,微波墙包含了独立的发射器单元和接收器单元,面对面安装,防护范围最远不超过允许长度,微波形成一个实体的栅栏,能有效地防止非法入侵。

  微波墙式探测器利用了场干扰原理或波束阻断式原理,是一种微波收、发分置的探测器。墙式微波探测器由微波发射机、发射天线、微波接收机、接收天线、报警控制器组成。微波指向性天线发射出定向性很好的调制微波束,工作频率通常选择在9至11GHz,微波接收天线与发射天线相对放置。当接收天线与发射天线之间有阻挡物或探测目标时,由于破坏了微波的正常传播,使接收到的微波信号有所减弱,以此来判断在接收机与发射机之间是否有人侵入。

  太阳能全无线对射探测技术

  太阳能全无线红外探测技术的兴起与应用是探测技术发展的又一亮点。太阳能无线对射利用太阳能供电,信号通过无线发送,不必再敷电源线和信号线,真正做到全无线工作,较大程度地解决了施工维护麻烦的难题,它的工作原理与传统的有线对射基本相同,但探测器功率必须降低,否则太阳能板面积过大不利于生产和使用。

  据宁波恒博通讯设备有限公司的市场部经理史敬介绍,太阳能红外对射探测器内置了可充电锂电池,供电部分采用太阳能板供电,这样就可以循环利用太阳能,无需敷设电源线缆。一般来说太阳能板为非晶硅,不需要太阳直射就能产生电能,安装环境大大扩展。另外,太阳能板的供电能力要远大于对射的功耗,保证晚上无光线和连续阴雨天也能照常工作。并且,对射内置了无线发送模块,报警信号用无线传输,在符合国家相关政策法规的前提下,尽可能用大功率的发射模块,以保证对射探测器与主机间的有效无线传输距离。因此,太阳能红外探测器的出现为用户提供了不同的选择。

  探测灵敏度的大大提高

  探测器的前端透镜直接影响到探测的角度和距离。以往的红外探测器主要采用传统的单波束PIR反射聚焦式光学系统和多波束型透镜聚焦式光学系统,这些镜片经常会产生在探测范围内红外探测不均匀而引起误报的问题。

  单波束反射聚焦系统是利用曲面反射镜将来自目标的红外辐射汇聚在红外传感器上;这种方式的探测器境界视场角较窄,一般在5°以下,但作用距离较远,可长达百米。而多波束型菲涅尔透镜则为多层光束结构,这种透镜是用特殊塑料一次成型,若干个小透镜排列在一个弧面上。警戒范围在不同方向呈多个单波束状态,组成立体扇形感热区域,构成立体警戒。

  对此,华际余刚表示,传统的菲涅尔透镜采用的是“标准镜头,广角部分镜头看远处,变焦部分看近处”,因而安装高度、探测距离的远近对灵敏度影响大,并且探测器正下方容易有死角,需要带支架安装或配置下视窗防护,而半球面镜头的使用则可以有效地解决灵敏度的均衡问题,其优越性主要表现在:半球面镜头结构不同距离的探测物体焦距相等,这便改善了传统标准镜头由于焦距变化引起灵敏度不均衡的问题。另外,在一定半径范围,相同焦距的球面镜头比标准菲涅尔镜头覆盖的面积更大,探测角度可达到大约110°(而非传统探测器的90°),并可以完全避免探测器在安装正下方的死角。因此,半球面镜的使用使得探测器的覆盖范围、灵敏度和可靠性都有较大的提升。

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 2023年五大物联网传感器趋势:越来越智能

    据数据统计,物联网传感器占2022年所有传感器出货量的三分之一。如今,物联网设备平均配备四个传感器。2022年,物联网传感器市场达到109亿美元,预计未来五年将以16%的复合年增长…

    2024年3月7日
  • 智能传感器庞大市场被“激发”,国产化加速推进

    智能传感器作为信息系统与外界环境交互的重要手段和感知信息的主要来源,决定着是未来信息技术产业发展能级的关键核心和先导基础。

    2024年2月24日
  • 传感器迎来多重利好 产业基地落户重庆

    随着市场、技术、政策三大驱动力的推动,我国传感器产业迎来了发展新契机。紧抓机遇,重庆斥资3亿元打造国家级传感器产业基地。

    2024年11月25日
  • 应用需求旺盛,我国智能传感器市场规模快速增长

    随着智能制造和物联网技术的发展,工业传感器已成为工业自动化和智能制造的基础设施。工业传感器通过收集和传输各种信息,可以实现生产线上的实时监测和控制,有助于提高生产效率,降低成本和保障产品质量。

    2023年11月28日
  • 传感器是什么

    传感器是什么 传感器是一种能够感知和测量环境中各种物理量的装置或设备。它可以将环境中的物理量转化为电信号或其他形式的输出信号,以便进行分析、处理和控制。传感器广泛应用于各个领域,如…

    2023年9月23日
  • 什么是智能传感器?在物联网设备中有何发展?

    如果您有运动传感器来帮助保护自己的房屋安全,或者使用靠近门时会自动打开的门,则说明您已经熟悉智能传感器。智能传感器已经存在了一段时间,但是随着物联网设备的指数级增长,这些传感器也有所增长。这些传感器用于不同行业的各种应用中,可以使事情变得更高效,更轻松。但是什么是智能传感器呢?

    2024年11月14日