RFID与移动终端相结合的SMAP技术

IC卡特别是非接触IC卡/RFID(以下将非接触IC卡及RFID统称为RFID)经过十多年的发展,已深入现代生活的各个角落,被广泛应用于公交、门禁、小额电子支付等领域。

    1. 概述 

    IC卡特别是非接触IC卡/RFID(以下将非接触IC卡及RFID统称为RFID)经过十多年的发展,已深入现代生活的各个角落,被广泛应用于公交、门禁、小额电子支付等领域。近年来,在轨道交通、物流管理、物品防伪、身份识别等需求推动下,RFID技术的不断进步,应用越来越普及,迫切需要各类RFID识别设备。与此同时,移动通讯终端经历20多年的迅速发展,已经几乎成为居民人手俱备的随身装置,普及率非常高,并且有向移动终端集成更多功能的趋势。 

    如果说80-90年代推动半导体行业发展的杀手级应用是PC,90-2000年代推动半导体行业发展的杀手级应用是手机的话,那么在最近十多年可能成为新杀手级应用的将是结合移动终端与RFID技术的一机(卡)多用。特别是在3G时代,具有无线连接功能无处不在的RFID读写器与非接触式应用的RFID将是重点中的重点。目前业界主要有两套基于非接触技术的解决方案:Combi SIM卡方案和NFC(Near Field Communication)方案。 

    Combi SIM(又称Dual Interface 双界面)卡方案指通过更换手机内部SIM,取代以Combi SIM卡,在保留原接触界面的SIM卡功能基础上增加非接触IC卡应用界面。Combi SIM卡方案在手机中增加了非接触IC卡的功能,但没有实现读写器和双工通讯功能。 

    NFC(Near Field Communication近场通讯)是这几年飞速发展的一种新兴技术,由Sony、Philips和Nokia提出,它使得两个电子设备直接可以进行短程的通讯,工作在13.56MHz频段,工作距离几个厘米。NFC技术目标是电子设备之间的近距离通讯,在实际推广过程中面临诸多困难,目前将其主要应用领域集中在近距离支付应用方面,并正在寻求NFC技术与SIM的关联方案。 

    上述两种方案尽管技术上都可行,但对于一机(卡)多用来说,核心是如何理顺移动设备制造商、移动服务运营商和应用服务运营商之间的关系,在这股跨行业的新应用整合中,需要一种平衡的、兼顾各方利用的渐进式方案。本文提出的SMAP(智能移动应用平台)解决方案,可以适用于移动支付、产品防伪、追踪监管、数字签名、身份认证和信息获取等多类应用,是移动终端与RFID结合的一种平衡演进之路。 

    2. SMAP平台及其应用的体系结构 

    2.1. SMAP平台的体系结构 

    SMAP平台构建在现有的非接触式IC卡应用和移动通信应用的基础上,进一步集成各种应用环境和安全体系,形成更小型的、更安全的、价格更低廉的和更便捷的高频RFID应用环境,SMAP平台的结构框图如下:


SMAP平台的结构框图

    在SMAP平台的体系结构中,SMAP模块(芯片)、安全体系和中间件产品构成了其核心内容,这里定义SMAP模块(芯片)为具有安全体系的、可以进行应用导入的、对外通过中间件提供服务的高频RFID应用产品。 

    2.2. SMAP平台的架构 

    如前所述,SMAP平台是针对移动终端与RFID应用结合的解决方案,其基本的架构为移动通信终端+SMAP模块+RFID,如下图所示:


SMAP平台的架构

    SMAP模块通过接口电路与移动通信终端集成在一起,RFID也被集成在移动终端上,其中RFID可以是单列的独立部分,也可以与SMAP模块集成在一起。单列的独立RFID可以接受SMAP模块的射频操作,这样做的目的是能很好地兼顾现状。正如前面所述,以非接触IC卡为技术核心的一卡通技术在我国得到了广泛的应用,典型和成熟的应用行业如公交一卡通、校园一卡通等,刷卡消费作为一种小额消费在这些行业广为接收,并且已经形成了事实上的利益关系。另一方面,在我国的现行制度规定下,除了银行及其相关单位之外,其他单位要发行带金卡具有很大的制度上的障碍。因此,在移动支付业务中,RFID作为一种独立的方式出现,既能够保证移动支付业务的实施,又能够兼顾已发卡方的利益关系,同时针对新发卡还可以直接采用银行卡,以规避政策风险。 

    2.3. SMAP模块的发展路线 

    在上述应用的体系结构中,其核心是SMAP模块,目前状态下,SMAP模块是内置安全特性和应用流程的多芯片模块,该模块的结构如下图所示:


SMAP模块结构模块

    其中,SMAP模块由3块芯片及若干分立元件组成,核心芯片为主控MCU,包含IO接口及电源管理控制接口;Reader为通用RFID读写器,支持访问13.56MHz频段下的ISO14443 type A,type B标准及ISO15693标准的产品;RFID为独立的电子标签模块,其可以独立封装天线,通过射频耦合与Reader通讯,也可以与模块集成在一起,共享一副天线。

    如前所述,对于一机(卡)多用来说,核心是如何理顺移动设备制造商、移动服务运营商和应用服务运营商之间的关系。,跨行业的应用整合,需要采用一种平衡的、渐进的、兼顾各方利用的方案逐步演进。下图演示了SMAP方案的发展路线。


    第一种方案是采用独立RFID的SMAP模块方案,该方案优点是独立RFID可以低障碍地引入现有的非接触应用运营商,发行和应用模式几乎保持不变,支持非接触的掉电应用模式,该方案适用于该类新应用初期概念的试点期;第二种方案是RFID与SMAP模块集成在一起,共用一副天线,方案二与方案一实现的功能相同,优点是减小独立RFID标签尺寸对手持移动终端的外观设计影响,但需要应用运营商与移动运营商、手机制造商之间的配合,该方案适合于一机多用的推广期;第三种方案则真正将SMAP模块集成为一颗单芯片,支持ISO18092标准,并将SMAP应用与SIM进行关联,是在前两种方案试运行后根据市场的反馈而推出的真正大规模推广的解决方案。 


    3. 安全体系 

    在SMAP的应用过程中,安全性是最基本也是最重要的要求。特别是移动支付应用,根据PBOC2.0的要求,在支付过程中,应该根据不同的交易类型,实现联机或脱机的交易认证。对于其他种类的SMAP应用,例如产品防伪、追踪监管等,就其安全体系来说,事实上就是一个数据加解密的过程。

    在SMAP不同的应用中,IC卡(RFID)主要有两种不同的产品:一般的逻辑加密卡或者CPU卡。一般来说,对于CPU卡,终端只是在用户卡与后台或PSAM卡之间传递认证数据,无须获得用户卡的密钥。密钥存储在后台或PSAM卡中,在交易过程中通过分散算法计算出用户卡的密钥,并进一步计算出相关的交易认证数据输出或对输入进行验证,系统的安全体系与终端是不相关的。在目前的非接触逻辑加密卡的应用中,由于卡片没有运算能力,终端必须通过对读写模块加载密钥才能实现对卡片的读写,因此如何保证密钥在传输过程中的安全性,是保

RFID与移动终端相结合的SMAP技术

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐