中科院自动化所在人脑视觉信息编解码方面取得新进展

尽管现有的视觉信息解码模型在对大脑信号的分类、识别任务上表现良好,但是试图通过大脑视觉皮层信号精确重建视觉刺激内容仍然非常困难。阻碍人们有效地进行视觉信息解码的因素主要包括 fMRI 数据维度高、样本量小、噪声严重、解码模型不科学等。传统的基于多体素模式分析(Multi-Voxel Pattern Analysis, MVPA)的视觉信息解码方法直接在高维的 fMRI 体素空间和视觉图像像素空间建立映射关系,这种解码方法很容易造成对冗余或噪声体素的过拟合。

现代认知神经科学以及功能磁共振成像技术(functional Magnetic Resonance Imaging, fMRI)的不断发展使得采用科学手段对大脑视觉皮层信号进行解读成为可能。研究人脑视觉信息解码模型不仅可以加深我们对人脑视觉信息处理机制的研究,还可以有力地促进新一代脑-机接口(Brain-Computer Interface, BCI)技术的发展。


尽管现有的视觉信息解码模型在对大脑信号的分类、识别任务上表现良好,但是试图通过大脑视觉皮层信号精确重建视觉刺激内容仍然非常困难。阻碍人们有效地进行视觉信息解码的因素主要包括 fMRI 数据维度高、样本量小、噪声严重、解码模型不科学等。传统的基于多体素模式分析(Multi-Voxel Pattern Analysis, MVPA)的视觉信息解码方法直接在高维的 fMRI 体素空间和视觉图像像素空间建立映射关系,这种解码方法很容易造成对冗余或噪声体素的过拟合。此外,现有的视觉信息解码方法大多数基于对视觉图像的线性变换,没有结合人脑视觉系统的信息处理机制,解码效果差并且缺乏生物学基础。


自动化所何晖光研究员团队近年来一直致力于更复杂刺激(如人脸,自然图像,乃至动态视觉刺激)的大脑解码工作,继去年关于“利用fMRI信号重建图像”的工作被MIT Technology Review头条报道后,基于以往工作积累,提出了一种基于贝叶斯深度学习的大脑视觉信息解码模型(见图一),针对基于fMRI数据的视觉神经信息编解码问题, 提出了统一的多视图深度生成式模型(Deep Generative Multi-view Model, DGMM)(见图二),为基于大脑信号的视觉图像重建问题提供了有效的解决方案。相关研究成果《Reconstructing Perceived Images from Human Brain Activities with Bayesian Deep Multi-view Learning》近日已在神经网络及机器学习领域的国际权威期刊IEEE Transactions on Neural Networks and Learning Systems (TNNLS, IF=7.982)在线发表,为脑-机接口的进一步研究打下了坚实的基础。


该研究以一种科学合理的方式建立起了视觉图像和大脑响应之间的关系,将视觉图像重建问题转化成多视图隐含变量模型中缺失视图的贝叶斯推断问题。受人脑视觉信息处理机制(层次化、Bottom-up、Top-down)的启发,团队采用了深度神经网络从视觉图像中逐层提取视觉特征和概念,提高了模型的表达能力和可解释性;受视觉区域的体素感受野和视觉信息的稀疏表达准则的启发,团队采用了稀疏贝叶斯学习从大量体素中自动筛选出对视觉信息解码贡献较大的体素,提高了模型的稳定性和泛化能力。深度生成式多视图模型充分利用了 fMRI 体素之间的相关性信息,有效抑制了体素噪声的干扰,增强了算法的鲁棒性。得益于贝叶斯方法的优点,深度生成式多视图模型能够方便灵活地融合先验知识,进而提升预测性能。大量的实验结果验证了深度生成式多视图模型的优越性。新算法为大脑信号解码问题提供了一个行之有效的通用框架,具有很强的可扩展性,允许从不同角度对其进行扩展以适应不同任务。本项目不仅为探究大脑的视觉信息处理机制提供了一个强有力的工具,而且为脑-机接口的发展提供了技术支持,将对类脑智能的发展起到一定的促进作用。


论文的第一作者是杜长德博士生。该工作同时受到了国家自然科学基金重点项目、中科院先导项目以及中科院青促会优秀会员项目的资助。


中科院自动化所在人脑视觉信息编解码方面取得新进展

图一:基于贝叶斯深度多视图学习的视觉信息编解码框架


中科院自动化所在人脑视觉信息编解码方面取得新进展

中科院自动化所在人脑视觉信息编解码方面取得新进展

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 电子警察车牌识别技术系统构架分析

    随着视频技术的发展,500万像素的高清摄像机已被越来越广泛的应用于电子警察系统中,通常一台500万工业高清摄像机可以覆盖最多4个车道。结合模式识别技术和计算机智能算法技术的发展,电子警察系统已不单单是闯红灯抓拍等违章抓拍的功能了,还具有了其它一些强大的功能:(1)车牌识别;(2)卡口监测;(3)交通流量统计。

    2024年4月15日
  • 基于云计算技术的智能公交管理与应用

    随着云计算、物联网及通信技术的快速发展,特别是“云交通”概念的产生,智能公交与新技术的融合进入了一个新的阶段。基于云计算技术的智能公交产品与应用将在未来逐步走入普通大众的生活,城市交通将进入“云交通”时代。本文将重点讲述云计算在智能公交系统中的市场需求和实际应用。

    2024年4月9日
  • 到2020年,山西大数据产业产值将力争突破1000亿元

    6月19日,省政府发布了《关于进一步扩大和升级信息消费的实施意见》,将从信息消费基础建设领域、信息消费产品供给领域、信息消费生活和公共服务类领域等重点领域入手,推动面向生产、生活和公共服务的信息消费快速健康成长。

    资讯 2024年10月17日
  • 智能交通行业特点及未来发展趋势分析

    开发了信息的质量控制技术、多源交通信息融合技术、信息的多时间尺度预测技术、信息集成技术、信息压缩技术和存储技术等,大大提高了信息的精度及信息提供的种类。对于出行者来说,获得实时、预测和反映历史规律的道路网络交通状况信息,已经日益成为一种现实的需求。

    2024年4月14日
  • 多传感器集成技术助力智能化安防建设

    随着传感器技术、数据处理技术、计算机技术、网络通讯技术、人工智能技术和并行计算的软硬件技术等相关技术的发展,多传感器信息融合技术已受到了广泛关注。随着科学技术的进步,多传感器信息融合至今已形成和发展成为一门信息综合处理的专门技术,并很快推广应用到工业机器人、智能检测、自动控制、交通管理和医疗诊断等多种领域。

    2024年4月11日
  • 移动通信技术在物联网中的应用

    本文结合我国物联网技术的发展状况,分析移动通信技术在物联网的应用。

    2024年4月9日