未来无人机像飞鸟一样轻捷智能

如果这项技术进一步发展,可能会使所有无人机都变得像飞虫或鸟类一样小巧、敏捷且智能。

从外表看,这台无人机和它的同类没有很大不同,但实际上,它的“大脑”别有乾坤。

这是荷兰代尔夫特理工大学团队研发的新式无人机,采用了基于动物大脑工作原理的神经形态图像处理器来控制自主飞行。与目前在GPU(图形芯片)上运行的深度神经网络相比,动物大脑使用的数据和能量更少。因此,神经形态处理器非常适合小型无人机,完全不需要笨重的大型硬件和电池。在飞行过程中,该无人机的深度神经网络处理数据的速度比在GPU上运行时快64倍,而能耗仅为后者的1/3。

如果这项技术进一步发展,可能会使所有无人机都变得像飞虫或鸟类一样小巧、敏捷且智能。

未来无人机像飞鸟一样轻捷智能

未来无人机像飞鸟一样轻捷智能

上图为第一架采用完全视觉控制的神经形态AI无人机。

下图为神经形态无人机飞越花朵图案,无人机从放在角落的神经形态相机接收到视觉输入。

红色表示像素变暗,绿色表示像素变亮。

图片来源:圭多・德・克罗恩/代尔夫特理工大学

“进阶”为脉冲神经网络

人工智能(AI)拥有巨大潜力,可为自主机器人提供实际应用所需的智力支持。然而,当前的AI依赖于需要大量计算能力的深度神经网络。用于运行深度神经网络的GPU又会消耗大量能量,特别是对于像无人机这样的小型机器人来说,更是一个严重问题,因为它们在传感和计算方面只能携带非常有限的资源。

动物大脑处理信息的方式,则与GPU上运行的神经网络截然不同。生物神经元异步处理信息,主要通过尖峰电脉冲进行通信。由于发送这样的尖峰会消耗能量,因此大脑会自发最大限度地减少尖峰。

受动物大脑这些特性的启发,科学家们正在开发新的神经形态处理器。这些新处理器允许运行脉冲神经网络。

脉冲神经网络执行的计算比标准深度神经网络中的计算简单得多。数字脉冲神经元只需要添加整数,而标准神经元必须相乘并添加浮点数。这使得脉冲神经网络更快、更节能。举个例子,这就好比人类大脑可以简单地判断出,计算5+8比计算6.25×3.45+4.05×3.45要容易得多。

如果将神经形态处理器与神经形态传感器(如神经形态相机)结合,这种能源效率还将进一步提高。其信号可直接输入在神经形态处理器上运行的脉冲神经网络,成为自主机器人的巨大推动力。

首次实现神经形态视觉和控制

在发表于《科学・机器人》上的一篇文章中,荷兰代尔夫特理工大学研究人员首次展示了这种使用神经形态视觉和控制进行自主飞行的无人机。具体来说,他们开发了一种脉冲神经网络,可处理来自神经形态相机的信号,并输出控制命令,以确定无人机的姿态和推力。他们将这个网络部署在无人机上的神经形态处理器上,即英特尔的Loihi神经形态研究芯片。借助网络,无人机可感知并控制自己在各个方向的运动。

训练脉冲神经网络其实是个巨大挑战。研究团队设计了由两个模块组成的网络。第一个模块学习从移动的神经形态相机的信号中,通过视觉感知运动。它仅利用来自相机的数据,完全以自我监督的方式自行完成,类似于动物学习如何感知世界。

第二个模块学习在模拟器中将估计的运动映射到控制命令。这种学习依赖于模拟中的人工进化,经过几代人工进化,脉冲神经网络就会越来越擅长控制,最终能够以不同的速度向任何方向飞行。

最终,无论是在黑暗环境中穿梭,还是在明亮光线下翱翔,凭借其神经形态视觉和控制,无人机能轻松实现不同的光照条件下的多种速度飞行。

神经形态AI大幅提高能效和速度

这是神经形态AI的一次完美演出。

首先,该网络平均每秒运行274―1600次。而在小型嵌入式GPU上运行的同一网络,平均每秒仅运行25次,相差10―64倍。

其次,在运行该网络时,英特尔Loihi神经形态研究芯片耗电1.007瓦,其中1瓦是处理器在打开芯片时消耗的空闲功率,运行网络本身只需7毫瓦;相比之下,嵌入式GPU在运行同一网络时,耗电为3瓦,其中1瓦为空闲功率,2瓦用于运行网络。

神经形态方法无疑使AI运行更快、更高效,而且能轻松部署在微型自主机器人上。

拿微型自主无人机来说,其可用于监测温室作物、跟踪仓库库存等诸多领域。它们更安全,可在狭窄的环境中(比如几株植物之间)顺利导航;它们还非常便宜,可以成群部署,快速覆盖一整个区域。

但科学家不会止步于此,他们正在进一步缩小神经形态硬件,并准备将神经形态AI扩展到更复杂的任务中。

阅读剩余 38%

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 应用人工智能的未来:迈向超个性化和可持续发展的世界

    企业领导者面临着解决可持续发展目标的挑战,包括减少碳足迹和管理能源消耗成本,同时还要确保其企业能够利用快速变化的步伐和新的商业机会,推进技术,特别是人工智能,使每个部门都能实现。 …

    2024年11月29日
  • 无线传感器网络在智能交通系统中的应用

    信息路由则交给父(汇聚)节点及网络中具有路由功能的协调器和路由器完成,降低了节点功耗和软件实现复杂度。④此外,根据不同应用场合的需要,无线传感器节点要具有不同的传感器接口,能外接不同的传感器。

    2024年4月14日
  • “CC”新拼争 CMOS将要上演应用逆转

    近些年来,虽然CMOS芯片始终处在一个默默发展的态势。但是由于一直以来受到CCD传感器光环的覆盖,所以很难得到人们更多的关注。不过,这也为CMOS的发展与腾飞提供了更多的积累过程。

    2024年4月15日
  • 习近平:推动我国新一代人工智能健康发展

    中共中央总书记习近平在主持学习时强调,人工智能是新一轮科技革命和产业变革的重要驱动力量,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。要深刻认识加快发展新一代人工智能的重大意义,加强领导,做好规划,明确任务,夯实基础,促进其同经济社会发展深度融合,推动我国新一代人工智能健康发展。

    2024年6月16日
  • 国家工信安全中心发布《人工智能中国专利技术分析报告》

    12月2日,国家工业信息安全发展研究中心发布《人工智能中国专利技术分析报告》。针对人工智能下深度学习技术、语音识别、计算机视觉、云计算、自然语言处理、智能驾驶、智能机器人等七大领域在中国的专利态势进行深度分析。

    2024年4月11日
  • 物联网成为全球智慧城市发展基础

    感知层、网络层和应用层是组成物联网的三层逻辑架构,就市场规模来看,目前网络层发展形势较好,感知层和应用层发展动力不足。物联网感知层主要负责感知信息,通过传感器、数码设备采集数据,以及通过RFID、条码、红外等技术传递数据,将数据源源不断地导入信息处理系统,以达到信息的传送、处理、存储、显示、记录等要求。

    2024年9月15日