1. 引子
随着现代模式识别技术的发展,模式识别技术中的一些具体的分枝技术逐渐成熟起来,有不少已经达到了可以投入应用的程度,当然这种应用目前大多数仍然是出于限定环境条件下的应用。本文介绍模式识别专业方向的一个子分枝DD生物特征识别技术及其在金融行业的应用并加以分析比较。
2. 生物特征识别技术分类
所谓生物识别技术就是:通过计算机与光学、声学、生物传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性,(如指纹、脸像、虹膜等)和行为特征(如笔迹、声音、步态等)来进行个人身份的鉴定。传统的身份鉴定方法采用身份标识物品(如钥匙、证件、ATM卡等)和身份标识知识(如用户名和密码),但由于主要借助体外物,一旦证明身份的标识物品和标识知识被盗或遗忘,其身份就容易被他人冒充或取代。
生物识别技术比传统的身份鉴定方法更具安全、保密和方便性。生物特征识别技术具备不易遗忘、防伪性能好、不易伪造或被盗、随身“携带”和随时随地可用等优点。生物识别技术可广泛用于政府、军队、银行、社会福利保障、电子商务、安全防务。例如,一位储户走进了银行,他既没带银行卡,也没有回忆密码就径直提款,当他在提款机上提款时,一台摄像机对该用户的眼睛扫描,然后迅速而准确地完成了用户身份鉴定并办理业务。这是美国德克_斯洲联合银行的一个营业部中发生的一个真实的镜头。而该营业部所使用的正是现代生物识别技术中的”虹膜识别系统”.目前国内外正在研究的相关技术可以划分为下面这七个具体技术:人脸识别、虹膜识别、指纹识别、掌纹识别、静脉识别、声音识别、笔迹识别、行为识别、视频监督。
这七项技术中的前六项都属于身份认证范畴,也就是为了验证这个人或者物体是谁。从行为识别衍生出来另外的一个分支为视频监督,这是一种辅助身份验证手段,但是,却发现了它还有超越身份认证以外更大的用处,因此,就逐渐被独立出来。
2.1 人脸识别人脸识别是以人的面部所固有的生理特征来进行各人身份鉴定的技术。它属于生物识别技术中的一种,具有直观性强,后验性好的特点,但是,限于人脸部特征的信息量较大,加上成长个人带来的脸部特征的改变,这些都给这项技术的准确度带来了挑战。
人脸识别技术的研究肇始于20世纪60年代末期。20世纪90年代后期以来,一些商业性的人脸识别系统逐渐进入市场,但是,这些技术和系统离实用化都有一定距离,性能和准确率有待提高。美国遭遇恐怖袭击后,这一技术引起广泛关注。作为最容易隐蔽使用的识别技术,人脸识别成为当今国际反恐和安全防范最重要的手段之一。
影响人脸识别性能的因素有如下几条:
1、背景和头发:消除背景和头发,只识别脸部图像部分。
2、人脸在图像平面内的平移、缩放、旋转:采用几何规范化,人脸图像经过旋转、平移、缩放后,最后得到的脸部图像为指定大小,两眼水平,两眼距离一定。
3、人脸在图像平面外的偏转和俯仰:可以建立人脸的三维模型,或进行三维融合(morphing),将人脸图象恢复为正面图像。
4、光源位置和强度的变化:采用直方图规范化,可以消除部分光照的影响。采用对称的从阴影恢复形状(symmetric shape from shading)技术,可以得到一个与光源位置无关的图像。
5、年龄的变化:建立人脸图像的老化模型。
6、表情的变化:提取对表情变化不敏感的特征,或者将人脸图像分割为各个器官的图像,分别识别后再综合判断。
7、附着物(眼镜、胡须)的影响。
8、照(摄)相机的变化:同一人使用不同的照(摄)相机拍摄的图像是不同的。
测量人脸识别的主要性能指标有:1、 误识率(False Accept Rate):这是将其他人误作指定人员的概率;2、 拒识率(False Reject Rate):这是将指定人员误作其它人员的概率。
计算机在判别时采用的阈值不同这两个指标也不同。一般情况下,误识率FAR随阈值的增大(放宽条件)而增大,拒识率FRR随阈值的增大而减小。因此,可以采用错误率(Equal Error Rate;ERR)作为性能指标,这是调节阈值,使这FAR和FRR两个指标相等时的FAR 或FRR.人脸识别相对于其他生物特征识别技术具有一个最明显的优势是后验很容易。基本上通过人眼来判断就可以验证对这个人身份认证是否有错误,而其他技术都不可能通过如此简单的方法进行判断,基本上都需要专家和专用设备的配合才能做到。
2.2 虹膜识别据临床医学观察,虹膜位于眼角膜之后、水晶体之前,虹膜具有独特的结构,其颜色因含色素的多少与分布不同而异,并且这种独特的虹膜结构具有很好的稳定性。目前,主流的虹膜识别系统应用是:系统使用单色电视和摄像技术与软件相结合的视频方法获取虹膜数字化信息,验证时扫入的信息与预先存入的样板信息进行比对,以做出身份鉴定。
该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们。